Math Problem Statement

Solve the question accurately

Solution

Let's solve the questions one by one.

Question 5.1

Given sinθ=35\sin \theta = \frac{3}{5} and 90θ18090^\circ \leq \theta \leq 180^\circ, determine the value of the following:

5.1.1 Calculate the value of cosθ\cos \theta.

Since θ\theta is in the second quadrant, cosθ\cos \theta will be negative. We know: sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 (35)2+cos2θ=1\left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1 925+cos2θ=1\frac{9}{25} + \cos^2 \theta = 1 cos2θ=1925=1625\cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25} cosθ=45\cos \theta = -\frac{4}{5}

5.1.2 Calculate the value of tanθ\tan \theta.

tanθ=sinθcosθ=3545=34\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{3}{5}}{-\frac{4}{5}} = -\frac{3}{4}

5.1.3 Calculate the value of secθ\sec \theta.

secθ=1cosθ=145=54\sec \theta = \frac{1}{\cos \theta} = \frac{1}{-\frac{4}{5}} = -\frac{5}{4}

5.1.4 Prove that sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1.

This is the Pythagorean identity, which has already been used in 5.1.1: sin2θ+cos2θ=(35)2+(45)2=925+1625=2525=1\sin^2 \theta + \cos^2 \theta = \left(\frac{3}{5}\right)^2 + \left(-\frac{4}{5}\right)^2 = \frac{9}{25} + \frac{16}{25} = \frac{25}{25} = 1

5.1.5 Prove that tanθcotθ=1\tan \theta \cdot \cot \theta = 1.

tanθcotθ=(sinθcosθ)(cosθsinθ)=sinθcosθcosθsinθ=1\tan \theta \cdot \cot \theta = \left(\frac{\sin \theta}{\cos \theta}\right) \cdot \left(\frac{\cos \theta}{\sin \theta}\right) = \frac{\sin \theta \cdot \cos \theta}{\cos \theta \cdot \sin \theta} = 1

Question 5.2

Given sin51=0.78\sin 51^\circ = 0.78, determine:

5.2.1 sin129\sin 129^\circ

Since sin(180θ)=sinθ\sin(180^\circ - \theta) = \sin \theta: sin129=sin(18051)=sin51=0.78\sin 129^\circ = \sin(180^\circ - 51^\circ) = \sin 51^\circ = 0.78

Question 5.3

In the diagram, ABC\triangle ABC is a right-angled triangle at CC. Let DD be a point on ABAB such that CEABCE \perp AB.

5.3.1 Prove CEDABC\triangle CED \sim \triangle ABC.

Both triangles share C\angle C, and CED=CAB\angle CED = \angle CAB (since CEABCE \perp AB and by AA similarity criteria). Therefore, CEDABC\triangle CED \sim \triangle ABC.

5.3.2 Write down the ratio of sinD\sin D in ABC\triangle ABC.

sinD=CEAC\sin D = \frac{CE}{AC}

5.3.3 AB=13AB = 13 units, BC=5BC = 5 units. Calculate EDED.

First, use the Pythagorean theorem in ABC\triangle ABC: AC=AB2BC2=13252=16925=144=12 unitsAC = \sqrt{AB^2 - BC^2} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \text{ units} Since CEDABC\triangle CED \sim \triangle ABC: EDBC=CEACandCEAC=512\frac{ED}{BC} = \frac{CE}{AC} \quad \text{and} \quad \frac{CE}{AC} = \frac{5}{12} Thus, ED=512×12=5ED = \frac{5}{12} \times 12 = 5 units.


Would you like more details or have any questions? Here are 5 related questions you might consider:

  1. How can the sine, cosine, and tangent values change depending on the quadrant?
  2. Why is cosθ\cos \theta negative in the second quadrant?
  3. Can the Pythagorean identity be used in other forms of trigonometric problems?
  4. What is the significance of proving triangle similarity in geometry?
  5. How does triangle similarity help in solving problems related to right-angled triangles?

Tip: When solving trigonometric problems, always visualize the quadrant and angle to determine the correct sign of the trigonometric ratios.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Pythagorean Identity
Triangle Similarity

Formulas

Pythagorean theorem

Theorems

AA similarity criteria

Suitable Grade Level

High School