Math Problem Statement

Solve all the questions one by one with the explaining all the tricks and concepts

Solution

Sure, let's go through each question one by one with detailed explanations.

Question (i):

2tan301+tan230\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ}

We need to simplify the expression.

  1. Calculate tan30\tan 30^\circ: tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}

  2. Substitute tan30\tan 30^\circ into the expression: 2131+(13)2\frac{2 \cdot \frac{1}{\sqrt{3}}}{1 + \left(\frac{1}{\sqrt{3}}\right)^2}

  3. Simplify the denominator: 1+(13)2=1+13=431 + \left(\frac{1}{\sqrt{3}}\right)^2 = 1 + \frac{1}{3} = \frac{4}{3}

  4. Simplify the expression: 21343=2334=643=32333=336=32\frac{2 \cdot \frac{1}{\sqrt{3}}}{\frac{4}{3}} = \frac{2}{\sqrt{3}} \cdot \frac{3}{4} = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}

  5. Identify the result: 32=cos30\frac{\sqrt{3}}{2} = \cos 30^\circ

So, the correct option is: (B) cos 60\boxed{\text{(B) cos } 60^\circ}

Question (ii):

1tan2451+tan245\frac{1 - \tan^2 45^\circ}{1 + \tan^2 45^\circ}

  1. Calculate tan45\tan 45^\circ: tan45=1\tan 45^\circ = 1

  2. Substitute tan45\tan 45^\circ into the expression: 1121+12=111+1=02=0\frac{1 - 1^2}{1 + 1^2} = \frac{1 - 1}{1 + 1} = \frac{0}{2} = 0

So, the correct option is: (D) 0\boxed{\text{(D) 0}}

Question (iii):

sin2A=2sinA is true when A is:\sin 2A = 2 \sin A \text{ is true when } A \text{ is:}

We know the double angle formula for sine: sin2A=2sinAcosA\sin 2A = 2 \sin A \cos A

For this to be true, cosA\cos A must be 1, because: 2sinAcosA=2sinA    cosA=12 \sin A \cos A = 2 \sin A \implies \cos A = 1

This happens when: A=0A = 0^\circ

So, the correct option is: (A) 0\boxed{\text{(A) 0}^\circ}

Question (iv):

2tan301tan230\frac{2 \tan 30^\circ}{1 - \tan^2 30^\circ}

  1. Calculate tan30\tan 30^\circ: tan30=13\tan 30^\circ = \frac{1}{\sqrt{3}}

  2. Substitute tan30\tan 30^\circ into the expression: 2131(13)2\frac{2 \cdot \frac{1}{\sqrt{3}}}{1 - \left(\frac{1}{\sqrt{3}}\right)^2}

  3. Simplify the denominator: 1(13)2=113=231 - \left(\frac{1}{\sqrt{3}}\right)^2 = 1 - \frac{1}{3} = \frac{2}{3}

  4. Simplify the expression: 21323=2332=623=33=3\frac{2 \cdot \frac{1}{\sqrt{3}}}{\frac{2}{3}} = \frac{2}{\sqrt{3}} \cdot \frac{3}{2} = \frac{6}{2\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}

  5. Identify the result: 3=tan60\sqrt{3} = \tan 60^\circ

So, the correct option is: (C) tan 60\boxed{\text{(C) tan } 60^\circ}

Would you like more details or have any questions?

Here are 5 questions you can ask:

  1. How do you derive the double angle formula for sine?
  2. What are some common trigonometric identities?
  3. Can you explain the steps to solve another trigonometric expression?
  4. What are the values of sine and cosine for standard angles?
  5. How can we use trigonometric identities to simplify expressions?

Tip: Understanding fundamental trigonometric identities like sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 and tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta} is crucial for solving many trigonometric problems.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Trigonometric Identities
Double Angle Formula

Formulas

Double angle formula for sine
Tangent values for standard angles

Theorems

Trigonometric identities

Suitable Grade Level

High School