Math Problem Statement
Solve the trigonometric problems displayed in the image, including calculations for sine, cosine, tangent, and other trigonometric expressions.
Solution
The image contains several trigonometric problems. I will analyze and solve each problem step by step. Let's proceed with the solutions:
5. sin2α, если cosα=0.6, π<α<2π:
-
cosα=0.6
Using sin2α+cos2α=1:
sin2α=1−(0.6)2=1−0.36=0.64, so sinα=±0.8.
Since π<α<2π, sinα is negative: sinα=−0.8.
-
sin2α=2sinαcosα=2(−0.8)(0.6)=−0.96.
Answer: sin2α=−0.96.
6. sin2173∘+sin2263∘37:
- sin2173∘=sin2(180∘−7∘)=sin27∘.
- sin2263∘=sin2(360∘−97∘)=sin2(−97∘)=sin297∘.
- Using sin2x+sin2(90∘+x)=1:
sin27∘+sin297∘=1.
Answer: 137=37.
7. 203cos(−3π)sin(−3π):
- cos(−3π)=cos(3π)=21.
- sin(−3π)=−sin(3π)=−23.
- Substituting:
203⋅21⋅−23=203⋅−43=−153.
Answer: −153.
8. 59tan56∘⋅tan34∘:
- Using tanxtan(90∘−x)=1:
tan56∘⋅tan34∘=1.
- Substituting: 59⋅1=59.
Answer: 59.
9. cos76∘⋅cos14∘13sin152∘:
- sin152∘=sin(180∘−28∘)=sin28∘.
- cos76∘=sin14∘ (since cosx=sin(90∘−x)).
- Substituting:
sin14∘⋅cos14∘13sin28∘.
- Using sin2x=2sinxcosx:
sin14∘⋅cos14∘=2sin28∘.
So, 2sin28∘13sin28∘=13⋅2=26.
Answer: 26.
Let me know if you'd like me to proceed with the remaining problems or explain any solution in more detail.
5 Related Questions:
- How can we determine the sign of trigonometric functions in different quadrants?
- Why does sin2x+cos2x=1 hold for all values of x?
- What is the significance of complementary angles in trigonometry?
- How is sin(180∘−x) related to sinx?
- How can we simplify expressions involving double angles?
One Tip:
Always verify the quadrant of the angle to correctly assign the signs for sine, cosine, or tangent.