Math Problem Statement

Solve the trigonometric problems displayed in the image, including calculations for sine, cosine, tangent, and other trigonometric expressions.

Solution

The image contains several trigonometric problems. I will analyze and solve each problem step by step. Let's proceed with the solutions:


5. sin2α\sin 2\alpha, если cosα=0.6\cos \alpha = 0.6, π<α<2π\pi < \alpha < 2\pi:

  • cosα=0.6\cos \alpha = 0.6
    Using sin2α+cos2α=1\sin^2 \alpha + \cos^2 \alpha = 1:
    sin2α=1(0.6)2=10.36=0.64\sin^2 \alpha = 1 - (0.6)^2 = 1 - 0.36 = 0.64, so sinα=±0.8\sin \alpha = \pm 0.8.
    Since π<α<2π\pi < \alpha < 2\pi, sinα\sin \alpha is negative: sinα=0.8\sin \alpha = -0.8.

  • sin2α=2sinαcosα=2(0.8)(0.6)=0.96\sin 2\alpha = 2 \sin \alpha \cos \alpha = 2(-0.8)(0.6) = -0.96.

Answer: sin2α=0.96\sin 2\alpha = -0.96.


6. 37sin2173+sin2263\frac{37}{\sin^2 173^\circ + \sin^2 263^\circ}:

  • sin2173=sin2(1807)=sin27\sin^2 173^\circ = \sin^2 (180^\circ - 7^\circ) = \sin^2 7^\circ.
  • sin2263=sin2(36097)=sin2(97)=sin297\sin^2 263^\circ = \sin^2 (360^\circ - 97^\circ) = \sin^2 (-97^\circ) = \sin^2 97^\circ.
  • Using sin2x+sin2(90+x)=1\sin^2 x + \sin^2 (90^\circ + x) = 1:
    sin27+sin297=1\sin^2 7^\circ + \sin^2 97^\circ = 1.

Answer: 371=37\frac{37}{1} = 37.


7. 203cos(π3)sin(π3)20\sqrt{3} \cos \left(-\frac{\pi}{3}\right) \sin\left(-\frac{\pi}{3}\right):

  • cos(π3)=cos(π3)=12\cos\left(-\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}.
  • sin(π3)=sin(π3)=32\sin\left(-\frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}.
  • Substituting:
    2031232=20334=15320\sqrt{3} \cdot \frac{1}{2} \cdot -\frac{\sqrt{3}}{2} = 20\sqrt{3} \cdot -\frac{3}{4} = -15\sqrt{3}.

Answer: 153-15\sqrt{3}.


8. 59tan56tan3459 \tan 56^\circ \cdot \tan 34^\circ:

  • Using tanxtan(90x)=1\tan x \tan (90^\circ - x) = 1:
    tan56tan34=1\tan 56^\circ \cdot \tan 34^\circ = 1.
  • Substituting: 591=5959 \cdot 1 = 59.

Answer: 5959.


9. 13sin152cos76cos14\frac{13 \sin 152^\circ}{\cos 76^\circ \cdot \cos 14^\circ}:

  • sin152=sin(18028)=sin28\sin 152^\circ = \sin (180^\circ - 28^\circ) = \sin 28^\circ.
  • cos76=sin14\cos 76^\circ = \sin 14^\circ (since cosx=sin(90x)\cos x = \sin (90^\circ - x)).
  • Substituting:
    13sin28sin14cos14\frac{13 \sin 28^\circ}{\sin 14^\circ \cdot \cos 14^\circ}.
  • Using sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x:
    sin14cos14=sin282\sin 14^\circ \cdot \cos 14^\circ = \frac{\sin 28^\circ}{2}.
    So, 13sin28sin282=132=26\frac{13 \sin 28^\circ}{\frac{\sin 28^\circ}{2}} = 13 \cdot 2 = 26.

Answer: 2626.


Let me know if you'd like me to proceed with the remaining problems or explain any solution in more detail.

5 Related Questions:

  1. How can we determine the sign of trigonometric functions in different quadrants?
  2. Why does sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 hold for all values of xx?
  3. What is the significance of complementary angles in trigonometry?
  4. How is sin(180x)\sin(180^\circ - x) related to sinx\sin x?
  5. How can we simplify expressions involving double angles?

One Tip:

Always verify the quadrant of the angle to correctly assign the signs for sine, cosine, or tangent.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric identities
Complementary angles
Quadrant analysis
Double angle formulas
Simplification of trigonometric expressions

Formulas

sin^2(x) + cos^2(x) = 1
sin(180° - x) = sin(x)
cos(360° - x) = cos(x)
tan(x)tan(90° - x) = 1
sin(2x) = 2sin(x)cos(x)

Theorems

Pythagorean identity
Angle subtraction and addition formulas
Double angle theorem

Suitable Grade Level

Grades 10-12