Math Problem Statement

  1. Prove cos x + tan x sin x = sec x

  2. Simplify: cos pi/4 cos pi/6 + sin pi/4 sin pi/6

  3. Express sin 3xsin 5x as a sum of trigonometric functions.

  4. Air traffic controllers have 2 planes arriving at their airport. One is 30 miles out and the other is 35 miles out. a) If the angle the planes make with the airport as the vertex is 20 degrees, how far apart are the planes? b) If the plane 30 miles out is flying at 10,000, what must be the angle of descent to land? c) What is the angle between the lines of sight for the pilot 35 miles out?

Solution

Solutions

14. Prove:

cosx+tanxsinx=secx\cos x + \tan x \sin x = \sec x Proof:

  1. Rewrite tanx\tan x as sinxcosx\frac{\sin x}{\cos x}: cosx+tanxsinx=cosx+sinxsinxcosx\cos x + \tan x \sin x = \cos x + \frac{\sin x \cdot \sin x}{\cos x}
  2. Simplify the second term: cosx+sin2xcosx=cos2xcosx+sin2xcosx\cos x + \frac{\sin^2 x}{\cos x} = \frac{\cos^2 x}{\cos x} + \frac{\sin^2 x}{\cos x}
  3. Combine terms under a common denominator: cos2x+sin2xcosx\frac{\cos^2 x + \sin^2 x}{\cos x}
  4. Use the Pythagorean identity cos2x+sin2x=1\cos^2 x + \sin^2 x = 1: 1cosx=secx\frac{1}{\cos x} = \sec x Thus, cosx+tanxsinx=secx\cos x + \tan x \sin x = \sec x.

15. Simplify:

cosπ4cosπ6+sinπ4sinπ6\cos \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \sin \frac{\pi}{6} Use the angle addition formula: cosacosb+sinasinb=cos(ab)\cos a \cos b + \sin a \sin b = \cos (a - b)

  1. Substituting a=π4a = \frac{\pi}{4} and b=π6b = \frac{\pi}{6}: cosπ4cosπ6+sinπ4sinπ6=cos(π4π6)\cos \frac{\pi}{4} \cos \frac{\pi}{6} + \sin \frac{\pi}{4} \sin \frac{\pi}{6} = \cos \left(\frac{\pi}{4} - \frac{\pi}{6}\right)
  2. Simplify the angle: π4π6=3π122π12=π12\frac{\pi}{4} - \frac{\pi}{6} = \frac{3\pi}{12} - \frac{2\pi}{12} = \frac{\pi}{12}
  3. The result: cosπ12\cos \frac{\pi}{12}

16. Express sin3xsin5x\sin 3x \sin 5x as a sum of trigonometric functions.

Use the product-to-sum formula: sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2} \left[\cos (A - B) - \cos (A + B)\right]

  1. Substituting A=3xA = 3x and B=5xB = 5x: sin3xsin5x=12[cos(3x5x)cos(3x+5x)]\sin 3x \sin 5x = \frac{1}{2} \left[\cos (3x - 5x) - \cos (3x + 5x)\right]
  2. Simplify the angles: sin3xsin5x=12[cos(2x)cos(8x)]\sin 3x \sin 5x = \frac{1}{2} \left[\cos (-2x) - \cos (8x)\right]
  3. Use the property cos(θ)=cos(θ)\cos(-\theta) = \cos(\theta): sin3xsin5x=12[cos(2x)cos(8x)]\sin 3x \sin 5x = \frac{1}{2} \left[\cos (2x) - \cos (8x)\right]

17. Air traffic problem:

a) Find the distance between the planes.

Use the law of cosines: c2=a2+b22abcosCc^2 = a^2 + b^2 - 2ab\cos C Here:

  • a=30a = 30, b=35b = 35, and C=20C = 20^\circ.
  1. Substitute values: c2=302+3522(30)(35)cos20c^2 = 30^2 + 35^2 - 2(30)(35)\cos 20^\circ
  2. Simplify: c2=900+12252100cos20c^2 = 900 + 1225 - 2100\cos 20^\circ
  3. Approximate: c221252100(0.9397)21251973.37151.63c^2 \approx 2125 - 2100(0.9397) \approx 2125 - 1973.37 \approx 151.63
  4. Take the square root: c151.6312.32miles.c \approx \sqrt{151.63} \approx 12.32 \, \text{miles.}

b) Find the angle of descent for the 30-mile-out plane.

Use: θ=arctan(altitudedistance)\theta = \arctan\left(\frac{\text{altitude}}{\text{distance}}\right)

  1. Altitude = 10,000ft=10,0005280miles1.89miles10,000 \, \text{ft} = \frac{10,000}{5280} \, \text{miles} \approx 1.89 \, \text{miles}.
  2. Distance = 30miles30 \, \text{miles}.
  3. Substitute: θ=arctan(1.8930)\theta = \arctan\left(\frac{1.89}{30}\right)
  4. Approximate: θarctan(0.063)3.61.\theta \approx \arctan(0.063) \approx 3.61^\circ.

c) Find the angle between the lines of sight for the 35-mile-out pilot.

The angle between the lines of sight is the same as the interior angle at the airport. Thus, it is 2020^\circ.


Relative Questions

  1. Can you apply the product-to-sum formula to other trigonometric identities like cosAcosB\cos A \cos B?
  2. How does the law of cosines apply to more complex triangles in navigation?
  3. What is the significance of expressing products of trigonometric functions as sums?
  4. How would the solution to part (b) change if the altitude were halved?
  5. What are some real-world applications of the angle addition formula in engineering?

Tip:

Always remember to simplify complex trigonometric expressions by leveraging known formulas to reduce computation effort.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometric identities
Angle addition formulas
Product-to-sum formulas
Law of cosines
Angle of elevation/descent

Formulas

cos a cos b + sin a sin b = cos(a - b)
sin A sin B = 1/2 [cos(A - B) - cos(A + B)]
Law of cosines: c^2 = a^2 + b^2 - 2ab cos(C)
tan(θ) = opposite/adjacent

Theorems

Pythagorean identity: sin^2 x + cos^2 x = 1
Properties of cos(-θ) = cos(θ)

Suitable Grade Level

Grades 10-12