Math Problem Statement

求解全微分

Solution

好的,我们来求解这些函数的全微分。

(1) z=xy+xyz = xy + \frac{x}{y}

首先计算 zzxxyy 的偏导数: zx=y+1y\frac{\partial z}{\partial x} = y + \frac{1}{y} zy=xxy2\frac{\partial z}{\partial y} = x - \frac{x}{y^2}

全微分为: dz=zxdx+zydydz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy dz=(y+1y)dx+(xxy2)dydz = \left( y + \frac{1}{y} \right) dx + \left( x - \frac{x}{y^2} \right) dy

(2) z=eyxz = e^{\frac{y}{x}}

计算 zzxxyy 的偏导数: zx=eyx(yx2)=yx2eyx\frac{\partial z}{\partial x} = e^{\frac{y}{x}} \cdot \left( -\frac{y}{x^2} \right) = -\frac{y}{x^2} e^{\frac{y}{x}} zy=eyx1x=1xeyx\frac{\partial z}{\partial y} = e^{\frac{y}{x}} \cdot \frac{1}{x} = \frac{1}{x} e^{\frac{y}{x}}

全微分为: dz=zxdx+zydydz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy dz=(yx2eyx)dx+(1xeyx)dydz = \left( -\frac{y}{x^2} e^{\frac{y}{x}} \right) dx + \left( \frac{1}{x} e^{\frac{y}{x}} \right) dy

(3) z=yx2+y2z = \frac{y}{\sqrt{x^2 + y^2}}

计算 zzxxyy 的偏导数: zx=y(xx2+y2)x2+y2=xy(x2+y2)3/2\frac{\partial z}{\partial x} = \frac{y \cdot \left( -\frac{x}{\sqrt{x^2 + y^2}} \right)}{x^2 + y^2} = -\frac{xy}{(x^2 + y^2)^{3/2}} zy=x2+y2yyx2+y2x2+y2=x2(x2+y2)3/2\frac{\partial z}{\partial y} = \frac{\sqrt{x^2 + y^2} - y \cdot \frac{y}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{x^2}{(x^2 + y^2)^{3/2}}

全微分为: dz=zxdx+zydydz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy dz=xy(x2+y2)3/2dx+x2(x2+y2)3/2dydz = -\frac{xy}{(x^2 + y^2)^{3/2}} dx + \frac{x^2}{(x^2 + y^2)^{3/2}} dy

请问您需要详细的推导过程吗?还有其他问题需要解答吗?

接下来是一些您可能会感兴趣的问题:

  1. 如何求解隐函数的全微分?
  2. 如何求解曲面的切平面方程?
  3. 如何使用链式法则求复合函数的导数?
  4. 如何计算多元函数的梯度?
  5. 如何确定极值点及其分类?

小提示:在求解全微分时,熟练掌握偏导数的计算方法非常关键。

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Differentiation
Total Differential

Formulas

Total Differential Formula

Theorems

-

Suitable Grade Level

Undergraduate