Math Problem Statement

Do questions 1,3,5,7, and 9. Show all the work

Do questions 1, 3, 5, 7, and 9. Show all the work.

Solution

Let's solve questions 1, 3, 5, 7, and 9 step-by-step.


Question 1

dydx=4x+6x2\frac{dy}{dx} = -4x + 6x^2 This is a first-order differential equation. To solve it, we can integrate both sides with respect to xx.

  1. Separate and integrate: dy=(4x+6x2)dxdy = (-4x + 6x^2) \, dx
  2. Integrate: y=(4x+6x2)dxy = \int (-4x + 6x^2) \, dx y=4xdx+6x2dxy = \int -4x \, dx + \int 6x^2 \, dx
  3. Solve each integral: y=4x22+6x33+Cy = -4 \cdot \frac{x^2}{2} + 6 \cdot \frac{x^3}{3} + C y=2x2+2x3+Cy = -2x^2 + 2x^3 + C
  4. General Solution: y=2x32x2+Cy = 2x^3 - 2x^2 + C

Question 3

4x32dydx=04x^3 - 2 \frac{dy}{dx} = 0 Rearrange to isolate dydx\frac{dy}{dx}:

  1. Rearrange: dydx=2x3\frac{dy}{dx} = 2x^3
  2. Separate and integrate: dy=2x3dxdy = 2x^3 \, dx
  3. Integrate: y=2x3dxy = \int 2x^3 \, dx y=2x44+Cy = 2 \cdot \frac{x^4}{4} + C
  4. Simplify: y=x42+Cy = \frac{x^4}{2} + C

Question 5

ydydx=x2y \frac{dy}{dx} = x^2 Separate variables to solve.

  1. Separate variables: ydy=x2dxy \, dy = x^2 \, dx
  2. Integrate both sides: ydy=x2dx\int y \, dy = \int x^2 \, dx
  3. Solve each integral: y22=x33+C\frac{y^2}{2} = \frac{x^3}{3} + C
  4. Multiply by 2 to simplify: y2=2x33+Cy^2 = \frac{2x^3}{3} + C

This is the implicit form of the solution.


Question 7

dydx=2xy\frac{dy}{dx} = 2xy This is a separable differential equation.

  1. Separate variables: 1ydy=2xdx\frac{1}{y} \, dy = 2x \, dx
  2. Integrate both sides: 1ydy=2xdx\int \frac{1}{y} \, dy = \int 2x \, dx
  3. Solve each integral: lny=x2+C\ln |y| = x^2 + C
  4. Exponentiate both sides to solve for yy: y=ex2+C=eCex2y = e^{x^2 + C} = e^C e^{x^2}
  5. Let eC=Ce^C = C' (a new constant): y=Cex2y = C' e^{x^2}

Question 9

dydx=3x2y2xy\frac{dy}{dx} = 3x^2 y - 2xy Factor out yy on the right side:

  1. Rewrite: dydx=y(3x22x)\frac{dy}{dx} = y (3x^2 - 2x)
  2. Separate variables: 1ydy=(3x22x)dx\frac{1}{y} \, dy = (3x^2 - 2x) \, dx
  3. Integrate both sides: 1ydy=(3x22x)dx\int \frac{1}{y} \, dy = \int (3x^2 - 2x) \, dx
  4. Solve each integral: lny=x3x2+C\ln |y| = x^3 - x^2 + C
  5. Exponentiate both sides to solve for yy: [ y = e^{x^3 - x^2

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Separable Differential Equations
Integration

Formulas

Separation of variables
Basic integration
Exponential functions for solutions

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate - Calculus I or Differential Equations