Math Problem Statement

A round of drinks comprising three beers, two glasses of wine, seven cappuccinos and three whiskeys costs $103. A round of nine beers, one glass of wine, four cappuccinos and five whiskeys costs $173. The price of a beer is three times the price of a cappuccino. The price of whiskey is three times the price of a wine.

Use Cramer's rule to find the cost of a glass of wine.

Note: Type your result using an integer number. Do not type any currency symbol.

The cost of one wine is =

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Systems of Linear Equations
Cramer's Rule

Formulas

b = 3c (price of beer is three times the price of cappuccino)
h = 3w (price of whiskey is three times the price of wine)
16c + 11w = 103 (first equation after substitution)
31c + 16w = 173 (second equation after substitution)
Cramer's Rule: w = det(replaced matrix) / det(coefficient matrix)

Theorems

Cramer's Rule
Determinants

Suitable Grade Level

Grades 10-12