To solve this system using Cramer's Rule, let’s first write down the equations clearly:
- x+3y+z=−1
- x+2y+3z=4
- x+8y+5z=−7
Cramer's Rule uses determinants to solve systems of linear equations of the form:
Ax=B
where A is the matrix of coefficients, x is the vector of variables, and B is the constants vector.
Step 1: Matrix Setup
Let’s define the coefficient matrix A and the constant vector B:
A=111328135,B=−14−7
Step 2: Determinant of A
To find x, y, and z using Cramer's Rule, we first calculate det(A).
det(A)=111328135
Expanding along the first row:
det(A)=1⋅2835−3⋅1135+1⋅1128
Calculating each minor:
- 2835=(2⋅5)−(3⋅8)=10−24=−14
- 1135=(1⋅5)−(3⋅1)=5−3=2
- 1128=(1⋅8)−(2⋅1)=8−2=6
So,
det(A)=1⋅(−14)−3⋅2+1⋅6=−14−6+6=−14
Step 3: Determinants for x, y, and z
Now, we replace each column of A with B to form matrices Ax, Ay, and Az and compute their determinants.
det(Ax):
Ax=−14−7328135
Expanding along the first row:
det(Ax)=−1⋅2835−3⋅4−735+1⋅4−728
Using the minors computed:
- 2835=−14
- 4−735=(4⋅5)−(3⋅−7)=20+21=41
- 4−728=(4⋅8)−(2⋅−7)=32+14=46
Thus,
det(Ax)=(−1)(−14)−3(41)+1(46)=14−123+46=−63
det(Ay):
Ay=111−14−7135
Expanding and solving similarly, we find det(Ay).
det(Az):
[
A_z = \begin{bmatrix}