Math Problem Statement

Solve by cramers rule

Solve by Cramer's rule

Solution

To solve this system using Cramer's Rule, let’s first write down the equations clearly:

  1. x+3y+z=1x + 3y + z = -1
  2. x+2y+3z=4x + 2y + 3z = 4
  3. x+8y+5z=7x + 8y + 5z = -7

Cramer's Rule uses determinants to solve systems of linear equations of the form:

Ax=BAx = B

where AA is the matrix of coefficients, xx is the vector of variables, and BB is the constants vector.

Step 1: Matrix Setup

Let’s define the coefficient matrix AA and the constant vector BB:

A=[131123185],B=[147]A = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 2 & 3 \\ 1 & 8 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} -1 \\ 4 \\ -7 \end{bmatrix}

Step 2: Determinant of AA

To find xx, yy, and zz using Cramer's Rule, we first calculate det(A)\det(A).

det(A)=131123185\det(A) = \begin{vmatrix} 1 & 3 & 1 \\ 1 & 2 & 3 \\ 1 & 8 & 5 \end{vmatrix}

Expanding along the first row:

det(A)=1238531315+11218\det(A) = 1 \cdot \begin{vmatrix} 2 & 3 \\ 8 & 5 \end{vmatrix} - 3 \cdot \begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 \\ 1 & 8 \end{vmatrix}

Calculating each minor:

  1. 2385=(25)(38)=1024=14\begin{vmatrix} 2 & 3 \\ 8 & 5 \end{vmatrix} = (2 \cdot 5) - (3 \cdot 8) = 10 - 24 = -14
  2. 1315=(15)(31)=53=2\begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix} = (1 \cdot 5) - (3 \cdot 1) = 5 - 3 = 2
  3. 1218=(18)(21)=82=6\begin{vmatrix} 1 & 2 \\ 1 & 8 \end{vmatrix} = (1 \cdot 8) - (2 \cdot 1) = 8 - 2 = 6

So,

det(A)=1(14)32+16=146+6=14\det(A) = 1 \cdot (-14) - 3 \cdot 2 + 1 \cdot 6 = -14 - 6 + 6 = -14

Step 3: Determinants for xx, yy, and zz

Now, we replace each column of AA with BB to form matrices AxA_x, AyA_y, and AzA_z and compute their determinants.

det(Ax)\det(A_x):

Ax=[131423785]A_x = \begin{bmatrix} -1 & 3 & 1 \\ 4 & 2 & 3 \\ -7 & 8 & 5 \end{bmatrix}

Expanding along the first row:

det(Ax)=1238534375+14278\det(A_x) = -1 \cdot \begin{vmatrix} 2 & 3 \\ 8 & 5 \end{vmatrix} - 3 \cdot \begin{vmatrix} 4 & 3 \\ -7 & 5 \end{vmatrix} + 1 \cdot \begin{vmatrix} 4 & 2 \\ -7 & 8 \end{vmatrix}

Using the minors computed:

  1. 2385=14\begin{vmatrix} 2 & 3 \\ 8 & 5 \end{vmatrix} = -14
  2. 4375=(45)(37)=20+21=41\begin{vmatrix} 4 & 3 \\ -7 & 5 \end{vmatrix} = (4 \cdot 5) - (3 \cdot -7) = 20 + 21 = 41
  3. 4278=(48)(27)=32+14=46\begin{vmatrix} 4 & 2 \\ -7 & 8 \end{vmatrix} = (4 \cdot 8) - (2 \cdot -7) = 32 + 14 = 46

Thus,

det(Ax)=(1)(14)3(41)+1(46)=14123+46=63\det(A_x) = (-1)(-14) - 3(41) + 1(46) = 14 - 123 + 46 = -63

det(Ay)\det(A_y):

Ay=[111143175]A_y = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 4 & 3 \\ 1 & -7 & 5 \end{bmatrix}

Expanding and solving similarly, we find det(Ay)\det(A_y).

det(Az)\det(A_z):

[ A_z = \begin{bmatrix}

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Systems of Linear Equations
Determinants

Formulas

Cramer's Rule: x = det(A_x)/det(A), y = det(A_y)/det(A), z = det(A_z)/det(A)

Theorems

Cramer's Rule

Suitable Grade Level

Grades 10-12