Math Problem Statement

Find the value of each variable in the given triangles based on special right triangle properties.

Solution

This worksheet involves solving for missing variables in triangles based on angles and side lengths. The triangles appear to involve special right triangles, such as:

  1. 45°-45°-90° triangles (isosceles right triangles, where legs are equal, and the hypotenuse is 2\sqrt{2} times the leg).
  2. 30°-60°-90° triangles (where the relationships between the sides are 1 : 3\sqrt{3} : 2).

Let me solve these step-by-step:


Problem 1:

45°-45°-90° triangle:

  • Hypotenuse = 13.
  • Relationship: Leg = hypotenuse2=132=1322\frac{\text{hypotenuse}}{\sqrt{2}} = \frac{13}{\sqrt{2}} = \frac{13\sqrt{2}}{2}.

Thus:

  • x=y=1322x = y = \frac{13\sqrt{2}}{2}.

Problem 3:

30°-60°-90° triangle:

  • Shorter leg (yy') = 3 (opposite 30°).
  • Relationship:
    • Longer leg = y3=33y' \cdot \sqrt{3} = 3\sqrt{3}.
    • Hypotenuse = 2y=62y' = 6.

Thus:

  • x=6x = 6, y=33y = 3\sqrt{3}.

Problem 5:

45°-45°-90° triangle:

  • Hypotenuse = 10210\sqrt{2}.
  • Relationship: Leg = hypotenuse2=1022=10\frac{\text{hypotenuse}}{\sqrt{2}} = \frac{10\sqrt{2}}{\sqrt{2}} = 10.

Thus:

  • x=y=10x = y = 10.

Problem 7:

45°-45°-90° triangle:

  • Leg = 2142\sqrt{14}.
  • Relationship: Hypotenuse = leg2=2142=228=47\text{leg} \cdot \sqrt{2} = 2\sqrt{14} \cdot \sqrt{2} = 2\sqrt{28} = 4\sqrt{7}.

Thus:

  • x=y=214x = y = 2\sqrt{14}, y=47y = 4\sqrt{7}.

Problem 9:

30°-60°-90° triangle:

  • Hypotenuse = 22322\sqrt{3}.
  • Relationship:
    • Shorter leg = hypotenuse2=2232=113\frac{\text{hypotenuse}}{2} = \frac{22\sqrt{3}}{2} = 11\sqrt{3}.
    • Longer leg = Shorter leg 3=1133=33\cdot \sqrt{3} = 11\sqrt{3} \cdot \sqrt{3} = 33.

Thus:

  • x=33x = 33, y=113y = 11\sqrt{3}.

Problem 11:

45°-45°-90° triangle:

  • Hypotenuse = 10\sqrt{10}.
  • Relationship: Leg = hypotenuse2=102=5\frac{\text{hypotenuse}}{\sqrt{2}} = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5}.

Thus:

  • x=y=5x = y = \sqrt{5}.

Problem 13:

Combination of 30°-60°-90° and 45°-45°-90° triangles:

  • Longer leg of 30°-60°-90° is shared with the hypotenuse of the 45°-45°-90° triangle.
  1. 30°-60°-90° triangle:

    • Hypotenuse = 17.
    • Shorter leg = hypotenuse2=172\frac{\text{hypotenuse}}{2} = \frac{17}{2}.
    • Longer leg = shorter leg3=1723=1732\text{shorter leg} \cdot \sqrt{3} = \frac{17}{2} \cdot \sqrt{3} = \frac{17\sqrt{3}}{2}.
  2. 45°-45°-90° triangle:

    • Hypotenuse = Longer leg of the 30°-60°-90° triangle = 1732\frac{17\sqrt{3}}{2}.
    • Legs = hypotenuse2=17322=1764\frac{\text{hypotenuse}}{\sqrt{2}} = \frac{\frac{17\sqrt{3}}{2}}{\sqrt{2}} = \frac{17\sqrt{6}}{4}.

Thus:

  • x=172x = \frac{17}{2},
  • y=1732y = \frac{17\sqrt{3}}{2},
  • z=1764z = \frac{17\sqrt{6}}{4}.

Let me know if you'd like detailed explanations for specific steps!

Here are 5 related questions for further practice:

  1. What are the side ratios of a 30°-60°-90° triangle?
  2. How do you rationalize a denominator like 52\frac{5}{\sqrt{2}}?
  3. Can the Pythagorean Theorem verify side relationships in special triangles?
  4. How do you derive the side lengths for a 45°-45°-90° triangle?
  5. If one leg of a 30°-60°-90° triangle is 7, what are the other two sides?

Tip: Always memorize the ratios for special right triangles—they save time and reduce errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Special Right Triangles

Formulas

For 45°-45°-90° triangle: Leg = Hypotenuse / √2, Hypotenuse = Leg × √2
For 30°-60°-90° triangle: Shorter Leg = Hypotenuse / 2, Longer Leg = Shorter Leg × √3

Theorems

Special Right Triangle Theorems

Suitable Grade Level

Grades 9-10