Math Problem Statement
Solve the quadratic equation x^2 - 4x - 21 = 0 by completing the square.
Solution
Let's solve the quadratic equation by completing the square.
Step-by-Step Process:
-
Move the constant term to the right side:
-
Complete the square: Take half of the coefficient of (which is ), divide it by 2, and then square it: Add this value to both sides of the equation:
-
Solve for : Take the square root of both sides:
-
Find the two possible solutions:
Final solutions:
Would you like further details or have any questions?
Here are 5 related questions:
- What is the general formula for completing the square?
- How does completing the square help in deriving the quadratic formula?
- Can every quadratic equation be solved by completing the square?
- How is completing the square used in graphing quadratic functions?
- Why does completing the square work for solving quadratic equations?
Tip: When completing the square, always ensure that the coefficient of is 1 before proceeding!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra
Quadratic Equations
Completing the Square
Formulas
(x - h)^2 = k (standard form after completing the square)
Quadratic equation formula ax^2 + bx + c = 0
Theorems
Quadratic formula
Suitable Grade Level
Grades 8-10