Math Problem Statement

Solve with steps

Solution

Let's solve the questions from the provided image step-by-step.

Question 6

The floor plan of a house is drawn using a scale in which 12\frac{1}{2} inch corresponds to 1 foot. What is the actual length of a room whose length measures 8128 \frac{1}{2} inches in the floor plan?

To find the actual length of the room, we can set up a proportion using the given scale:

12 inch=1 foot\frac{1}{2} \text{ inch} = 1 \text{ foot}

812 inches=172 inches8 \frac{1}{2} \text{ inches} = \frac{17}{2} \text{ inches}

Let xx be the actual length in feet:

12 inch:1 foot=172 inches:x feet\frac{1}{2} \text{ inch} : 1 \text{ foot} = \frac{17}{2} \text{ inches} : x \text{ feet}

We can solve this proportion by cross-multiplying:

12×x=1×172\frac{1}{2} \times x = 1 \times \frac{17}{2}

x2=172\frac{x}{2} = \frac{17}{2}

Multiplying both sides by 2:

x=17x = 17

So, the actual length of the room is 1717 feet.

Question 7

Prove the given proportion properties.

(a) If ab=cd\frac{a}{b} = \frac{c}{d}, prove that ba=dc\frac{b}{a} = \frac{d}{c}.

Given:

ab=cd\frac{a}{b} = \frac{c}{d}

This means:

ad=bca \cdot d = b \cdot c

Taking the reciprocal of both sides:

1ad=1bc\frac{1}{a \cdot d} = \frac{1}{b \cdot c}

Rewriting this:

da=cb\frac{d}{a} = \frac{c}{b}

Therefore:

ba=dc\frac{b}{a} = \frac{d}{c}

(b) If ab=cd\frac{a}{b} = \frac{c}{d}, prove that a+bb=c+dd\frac{a + b}{b} = \frac{c + d}{d}.

Given:

ab=cd\frac{a}{b} = \frac{c}{d}

This means:

a=bcda = \frac{b \cdot c}{d}

Adding bb to both sides:

a+b=bcd+ba + b = \frac{b \cdot c}{d} + b

Factoring out bb:

a+b=b(cd+1)a + b = b \left( \frac{c}{d} + 1 \right)

Dividing both sides by bb:

a+bb=cd+1\frac{a + b}{b} = \frac{c}{d} + 1

Rewriting cd+1\frac{c}{d} + 1:

a+bb=c+dd\frac{a + b}{b} = \frac{c + d}{d}

(c) If ab=cd\frac{a}{b} = \frac{c}{d}, prove that abb=cdd\frac{a - b}{b} = \frac{c - d}{d}.

Given:

ab=cd\frac{a}{b} = \frac{c}{d}

This means:

a=bcda = \frac{b \cdot c}{d}

Subtracting bb from both sides:

ab=bcdba - b = \frac{b \cdot c}{d} - b

Factoring out bb:

ab=b(cd1)a - b = b \left( \frac{c}{d} - 1 \right)

Dividing both sides by bb:

abb=cd1\frac{a - b}{b} = \frac{c}{d} - 1

Rewriting cd1\frac{c}{d} - 1:

abb=cdd\frac{a - b}{b} = \frac{c - d}{d}

(d) If ab=cd\frac{a}{b} = \frac{c}{d}, prove that a+bab=c+dcd\frac{a + b}{a - b} = \frac{c + d}{c - d}.

Given:

ab=cd\frac{a}{b} = \frac{c}{d}

This means:

a=bcda = \frac{b \cdot c}{d}

Now we need to prove:

a+bab=c+dcd\frac{a + b}{a - b} = \frac{c + d}{c - d}

Using a=bcda = \frac{b \cdot c}{d}, we can write:

a+b=bcd+b=b(cd+1)a + b = \frac{b \cdot c}{d} + b = b \left( \frac{c}{d} + 1 \right)

ab=bcdb=b(cd1)a - b = \frac{b \cdot c}{d} - b = b \left( \frac{c}{d} - 1 \right)

So:

a+bab=b(cd+1)b(cd1)=cd+1cd1\frac{a + b}{a - b} = \frac{b \left( \frac{c}{d} + 1 \right)}{b \left( \frac{c}{d} - 1 \right)} = \frac{\frac{c}{d} + 1}{\frac{c}{d} - 1}

[ = \frac{\frac{c + d}{d}}{\frac{c - d}{d}} = \frac

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Proportions
Scale
Cross-multiplication

Formulas

-

Theorems

-

Suitable Grade Level

High School