Math Problem Statement

solve using quadratic formulae

Solution

To solve the problem, we need to find the length of DCDC in the trapezium ABCDABCD, given that AB=(x+3)AB = (x + 3) cm, DC=(2x3)DC = (2x - 3) cm, and BE=ECBE = EC. We also know the area of the trapezium is 15 cm².

The formula for the area of a trapezium is: Area=12×(Sum of parallel sides)×Height\text{Area} = \frac{1}{2} \times (\text{Sum of parallel sides}) \times \text{Height}

In this case, the parallel sides are ABAB and DCDC, and the height is ADAD. First, we need to find the height.

Given: AB=x+3 cmAB = x + 3 \text{ cm} DC=2x3 cmDC = 2x - 3 \text{ cm}

The height ADAD can be found using the right triangle BECBEC: BE=EC=DCAB2=(2x3)(x+3)2=2x3x32=x62BE = EC = \frac{DC - AB}{2} = \frac{(2x - 3) - (x + 3)}{2} = \frac{2x - 3 - x - 3}{2} = \frac{x - 6}{2}

Using the Pythagorean theorem in triangle BECBEC: AD2+BE2=AB2AD^2 + BE^2 = AB^2

AD2+(x62)2=(x+3)2AD^2 + \left( \frac{x - 6}{2} \right)^2 = (x + 3)^2

AD2+(x6)24=(x+3)2AD^2 + \frac{(x - 6)^2}{4} = (x + 3)^2

Simplify and solve for ADAD: AD2+x212x+364=x2+6x+9AD^2 + \frac{x^2 - 12x + 36}{4} = x^2 + 6x + 9

Multiply through by 4 to clear the fraction: 4AD2+x212x+36=4x2+24x+364AD^2 + x^2 - 12x + 36 = 4x^2 + 24x + 36

Simplify: 4AD2+x212x+364x224x36=04AD^2 + x^2 - 12x + 36 - 4x^2 - 24x - 36 = 0

4AD23x236x=04AD^2 - 3x^2 - 36x = 0

[ 4AD^2 = 3

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Pythagorean Theorem

Formulas

Area of a trapezium

Theorems

Pythagorean theorem

Suitable Grade Level

Grades 9-12