Math Problem Statement

Diketahui matriks-matriks A = (2 4; 1 3) dan B = (8 2; 3 2). Tentukan matriks X jika A . X = B.

Solution

The problem asks to find the matrix XX given the equation AX=BA \cdot X = B, where the matrices AA and BB are:

A=(2413),B=(8232).A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 8 & 2 \\ 3 & 2 \end{pmatrix}.

Solution:

We can solve for XX by finding the inverse of matrix AA (denoted as A1A^{-1}) and then multiplying both sides of the equation by A1A^{-1}:

A1AX=A1BX=A1B.A^{-1} \cdot A \cdot X = A^{-1} \cdot B \quad \Rightarrow \quad X = A^{-1} \cdot B.

Step 1: Find A1A^{-1}

The inverse of a 2x2 matrix A=(abcd)A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} is given by the formula:

A1=1det(A)(dbca),A^{-1} = \frac{1}{\text{det}(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},

where det(A)=adbc\text{det}(A) = ad - bc is the determinant of AA.

For the matrix A=(2413)A = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}:

  • a=2,b=4,c=1,d=3a = 2, b = 4, c = 1, d = 3,
  • det(A)=(2)(3)(4)(1)=64=2\text{det}(A) = (2)(3) - (4)(1) = 6 - 4 = 2.

Thus, the inverse of AA is:

A1=12(3412)=(322121).A^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -4 \\ -1 & 2 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & -2 \\ -\frac{1}{2} & 1 \end{pmatrix}.

Step 2: Multiply A1A^{-1} by BB

Now, we multiply A1A^{-1} by BB:

X=A1B=(322121)(8232).X = A^{-1} \cdot B = \begin{pmatrix} \frac{3}{2} & -2 \\ -\frac{1}{2} & 1 \end{pmatrix} \cdot \begin{pmatrix} 8 & 2 \\ 3 & 2 \end{pmatrix}.

Let's calculate this matrix product:

X11=(32×8)+(2×3)=126=6,X_{11} = \left( \frac{3}{2} \times 8 \right) + \left( -2 \times 3 \right) = 12 - 6 = 6, X12=(32×2)+(2×2)=34=1,X_{12} = \left( \frac{3}{2} \times 2 \right) + \left( -2 \times 2 \right) = 3 - 4 = -1, X21=(12×8)+(1×3)=4+3=1,X_{21} = \left( -\frac{1}{2} \times 8 \right) + \left( 1 \times 3 \right) = -4 + 3 = -1, X22=(12×2)+(1×2)=1+2=1.X_{22} = \left( -\frac{1}{2} \times 2 \right) + \left( 1 \times 2 \right) = -1 + 2 = 1.

Thus, the matrix XX is:

X=(6111).X = \begin{pmatrix} 6 & -1 \\ -1 & 1 \end{pmatrix}.

Final Answer:

X=(6111).X = \begin{pmatrix} 6 & -1 \\ -1 & 1 \end{pmatrix}.

Let me know if you would like further details or have questions! Here are some related questions to explore:

  1. How do you compute the determinant of a 3x3 matrix?
  2. Can all square matrices be inverted? Why or why not?
  3. What is the geometric interpretation of the inverse of a matrix?
  4. How is matrix multiplication used in solving systems of linear equations?
  5. What are the properties of matrix inverses?

Tip: When calculating the inverse of a matrix, always check that the determinant is not zero. If it is, the matrix has no inverse (it's called singular).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Operations
Matrix Inversion

Formulas

Inverse of a 2x2 matrix: A^(-1) = (1/det(A)) * (d -b; -c a)
Matrix multiplication: A * X = B
Determinant of a 2x2 matrix: det(A) = ad - bc

Theorems

Matrix Inversion Theorem
Determinant Calculation

Suitable Grade Level

Undergraduate (First-year) / High School (Advanced level)