Math Problem Statement

solve: (((∑xy)-(b∑x))/(∑x^2))=(((∑y)-(b∑1))/(∑x))

Solution

The equation you've provided is a form of a statistical equation, which often appears in the context of linear regression, where we are trying to solve for parameters of a linear model y=bx+ay = bx + a. The equation involves sums of products and squares, typically related to data points.

Let's break down the equation step by step to solve it:

Given: (xy)b(x)x2=(y)b(1)x\frac{\left(\sum xy\right) - b\left(\sum x\right)}{\sum x^2} = \frac{\left(\sum y\right) - b\left(\sum 1\right)}{\sum x}

Step 1: Cross-multiply to eliminate the denominators

We get: ((xy)b(x))(x)=((y)b(1))(x2)\left(\left(\sum xy\right) - b\left(\sum x\right)\right) \cdot \left(\sum x\right) = \left(\left(\sum y\right) - b\left(\sum 1\right)\right) \cdot \left(\sum x^2\right)

Step 2: Expand both sides

Expanding both sides gives us: (xy)(x)b(x)2=(y)(x2)b(1)(x2)\left(\sum xy\right)\left(\sum x\right) - b\left(\sum x\right)^2 = \left(\sum y\right)\left(\sum x^2\right) - b\left(\sum 1\right)\left(\sum x^2\right)

Step 3: Collect terms involving bb

We will move all the terms involving bb to one side of the equation and the rest to the other side: b(x)2b(1)(x2)=(y)(x2)(xy)(x)b\left(\sum x\right)^2 - b\left(\sum 1\right)\left(\sum x^2\right) = \left(\sum y\right)\left(\sum x^2\right) - \left(\sum xy\right)\left(\sum x\right)

Step 4: Factor out bb on the left-hand side

b[(x)2(1)(x2)]=(y)(x2)(xy)(x)b\left[\left(\sum x\right)^2 - \left(\sum 1\right)\left(\sum x^2\right)\right] = \left(\sum y\right)\left(\sum x^2\right) - \left(\sum xy\right)\left(\sum x\right)

Step 5: Solve for bb

Finally, divide both sides by the expression in brackets to isolate bb: b=(y)(x2)(xy)(x)(x)2(1)(x2)b = \frac{\left(\sum y\right)\left(\sum x^2\right) - \left(\sum xy\right)\left(\sum x\right)}{\left(\sum x\right)^2 - \left(\sum 1\right)\left(\sum x^2\right)}

This equation represents the slope bb in a simple linear regression model, where 1\sum 1 is simply the number of data points nn.

Summary:

The solution for bb is: b=(y)(x2)(xy)(x)(x)2n(x2)b = \frac{\left(\sum y\right)\left(\sum x^2\right) - \left(\sum xy\right)\left(\sum x\right)}{\left(\sum x\right)^2 - n\left(\sum x^2\right)}

Would you like further details, or do you have any questions?

Related Questions:

  1. What is the significance of the slope bb in linear regression?
  2. How do you calculate the sum of squares x2\sum x^2 for a dataset?
  3. What does the term xy\sum xy represent in statistical analysis?
  4. How does the equation change if we consider weighted sums?
  5. How would you interpret the case where the denominator equals zero?

Tip:

Understanding the derivation of the formula for the slope in linear regression can deepen your comprehension of how data points influence the final model.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Regression
Statistical Equations

Formulas

Linear regression equation
Formula for slope in linear regression

Theorems

-

Suitable Grade Level

College Level