Math Problem Statement

Oranges cost 25 cents each and apples cost 30 cents each. I bought 5 more oranges than apples, and the total cost was 4.55$. how many apples did I buy

Solution

Let's define the number of apples you bought as xx.

Since you bought 5 more oranges than apples, the number of oranges is x+5x + 5.

The cost of each apple is 30 cents, so the total cost of the apples is 0.30x0.30x.

The cost of each orange is 25 cents, so the total cost of the oranges is 0.25(x+5)0.25(x + 5).

The total cost of the apples and oranges combined is $4.55, which can be written as 4.55 in dollars.

We can now set up the equation for the total cost:

0.30x+0.25(x+5)=4.550.30x + 0.25(x + 5) = 4.55

Let's solve this step-by-step:

0.30x+0.25x+1.25=4.550.30x + 0.25x + 1.25 = 4.55

Combine like terms:

0.55x+1.25=4.550.55x + 1.25 = 4.55

Subtract 1.25 from both sides:

0.55x=3.300.55x = 3.30

Now, divide both sides by 0.55:

x=3.300.55=6x = \frac{3.30}{0.55} = 6

So, you bought 6 apples.

Would you like more details or have any questions?

Here are some related questions:

  1. How many oranges did I buy?
  2. What would be the total cost if I bought 7 apples instead?
  3. How would the equation change if oranges cost 30 cents and apples 25 cents?
  4. What is the total number of fruits I bought?
  5. What if the total cost was $5 instead of $4.55?

Tip: Always check your solution by plugging values back into the original equation to ensure correctness.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Equations

Formulas

Total cost equation: 0.30x + 0.25(x + 5) = 4.55
Simplified cost equation: 0.55x + 1.25 = 4.55

Theorems

-

Suitable Grade Level

Grades 6-8