Math Problem Statement

Solve the following questions

Solution

Let's solve the limits step by step.

Problem (a):

limx(2sin1xcos12x)\lim_{x \to \infty} \left( 2 \sin \frac{1}{x} - \cos \frac{1}{2x} \right)

Solution:

  1. Evaluate each trigonometric function as xx \to \infty:

    • sin1xsin0=0\sin \frac{1}{x} \to \sin 0 = 0
    • cos12xcos0=1\cos \frac{1}{2x} \to \cos 0 = 1
  2. Substitute these values into the limit expression: limx(2sin1xcos12x)=201=1\lim_{x \to \infty} \left( 2 \sin \frac{1}{x} - \cos \frac{1}{2x} \right) = 2 \cdot 0 - 1 = -1

Answer: 1\boxed{-1}


Problem (b):

limx(tan13x+xsin41x)\lim_{x \to \infty} \left( \tan \frac{1}{3x} + x \sin^4 \frac{1}{x} \right)

Solution:

  1. Evaluate each function as xx \to \infty:

    • tan13xtan0=0\tan \frac{1}{3x} \to \tan 0 = 0
    • For the second term, consider sin41x\sin^4 \frac{1}{x}: sin41x(1x)4 for large x\sin^4 \frac{1}{x} \approx \left(\frac{1}{x}\right)^4 \text{ for large } x Then, xsin41xx(1x)4=1x30 as xx \sin^4 \frac{1}{x} \approx x \left(\frac{1}{x}\right)^4 = \frac{1}{x^3} \to 0 \text{ as } x \to \infty.
  2. Substitute these values into the limit expression: limx(tan13x+xsin41x)=0+0=0\lim_{x \to \infty} \left( \tan \frac{1}{3x} + x \sin^4 \frac{1}{x} \right) = 0 + 0 = 0

Answer: 0\boxed{0}


Problem (c):

limx(sin23x32x+sin13xtan32x)\lim_{x \to \infty} \left( \frac{\sin \frac{2}{3x}}{\frac{3}{2x}} + \frac{\sin \frac{1}{3x}}{\tan \frac{3}{2x}} \right)

Solution:

  1. Evaluate each expression separately:

    • For the first term: limxsin23x32x can be simplified using the small-angle approximation sinθθ:\lim_{x \to \infty} \frac{\sin \frac{2}{3x}}{\frac{3}{2x}} \text{ can be simplified using the small-angle approximation } \sin \theta \approx \theta: sin23x32x23x32x=49\frac{\sin \frac{2}{3x}}{\frac{3}{2x}} \approx \frac{\frac{2}{3x}}{\frac{3}{2x}} = \frac{4}{9}

    • For the second term: limxsin13xtan32x also simplifies similarly sinθθ and tanθθ:\lim_{x \to \infty} \frac{\sin \frac{1}{3x}}{\tan \frac{3}{2x}} \text{ also simplifies similarly } \sin \theta \approx \theta \text{ and } \tan \theta \approx \theta: 13x32x=29\frac{\frac{1}{3x}}{\frac{3}{2x}} = \frac{2}{9}

  2. Adding these results: limx(49+29)=69=23\lim_{x \to \infty} \left( \frac{4}{9} + \frac{2}{9} \right) = \frac{6}{9} = \frac{2}{3}

Answer: 23\boxed{\frac{2}{3}}


Would you like more details on any of these solutions? Here are 8 related questions you might find interesting:

  1. How do small-angle approximations work in limit problems?
  2. What is L'Hôpital's rule and when is it applicable?
  3. How can trigonometric limits be evaluated when x0x \to 0 or xx \to \infty?
  4. How does the squeeze theorem help in solving limits?
  5. What happens when both the numerator and denominator approach zero in a limit?
  6. Can we generalize these limits for higher-order sine and cosine functions?
  7. How do asymptotic expansions assist in evaluating limits?
  8. What are the key differences between evaluating limits at infinity versus finite points?

Tip: When dealing with trigonometric limits, always consider if small-angle approximations or series expansions might simplify the problem.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric functions
Small-angle approximations

Formulas

-

Theorems

-

Suitable Grade Level

Advanced High School and College