Math Problem Statement

solve this problem with changing into u variable

solve this problem with changing into u variable

Solution

To solve the integral

3dxxx44,\int \frac{3 \, dx}{x \sqrt{x^4 - 4}},

we will change variables using a substitution method to simplify the square root. Let's proceed step by step:

Step 1: Substitution

Let: u=x2.u = x^2. Then: du=2xdxordu2=xdx.du = 2x \, dx \quad \text{or} \quad \frac{du}{2} = x \, dx.

The square root term becomes: x44=u24.\sqrt{x^4 - 4} = \sqrt{u^2 - 4}.

Step 2: Rewrite the Integral

Substituting into the integral: 3dxxx44=3xx44dx=3u24du2.\int \frac{3 \, dx}{x \sqrt{x^4 - 4}} = \int \frac{3}{x \sqrt{x^4 - 4}} \cdot dx = \int \frac{3}{\sqrt{u^2 - 4}} \cdot \frac{du}{2}.

Simplify the constants: 3u24du2=321u24du.\int \frac{3}{\sqrt{u^2 - 4}} \cdot \frac{du}{2} = \frac{3}{2} \int \frac{1}{\sqrt{u^2 - 4}} \, du.

Step 3: Solve the Simplified Integral

The integral 1u24du\int \frac{1}{\sqrt{u^2 - 4}} \, du is a standard form: 1u2a2du=lnu+u2a2+C,\int \frac{1}{\sqrt{u^2 - a^2}} \, du = \ln|u + \sqrt{u^2 - a^2}| + C, where a2=4a^2 = 4, so a=2a = 2.

Thus: 1u24du=lnu+u24+C.\int \frac{1}{\sqrt{u^2 - 4}} \, du = \ln|u + \sqrt{u^2 - 4}| + C.

Step 4: Substitute Back u=x2u = x^2

Returning to the original variable: 321u24du=32lnu+u24+C,\frac{3}{2} \int \frac{1}{\sqrt{u^2 - 4}} \, du = \frac{3}{2} \ln|u + \sqrt{u^2 - 4}| + C, and substituting u=x2u = x^2: 32lnx2+x44+C.\frac{3}{2} \ln|x^2 + \sqrt{x^4 - 4}| + C.

Final Answer:

3dxxx44=32lnx2+x44+C.\int \frac{3 \, dx}{x \sqrt{x^4 - 4}} = \frac{3}{2} \ln|x^2 + \sqrt{x^4 - 4}| + C.


Would you like me to go deeper into any part of this solution? Here are some related questions:

  1. How is the substitution method derived?
  2. Why is 1u2a2du\int \frac{1}{\sqrt{u^2 - a^2}} \, du a standard integral form?
  3. Can we solve this without substitution?
  4. How do constants affect the integral’s solution?
  5. What does this integral represent geometrically?

Tip: Always simplify square roots before substitution for more manageable calculations!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Substitution Method
Simplification of Square Roots

Formulas

\(\int \frac{1}{\sqrt{u^2 - a^2}} \, du = \ln|u + \sqrt{u^2 - a^2}| + C\)

Theorems

Standard Integrals for Substitution

Suitable Grade Level

College or Advanced High School (Calculus Level)