Math Problem Statement

1x2\int\sqrt{1-x^2}dx

Solution

To solve the integral

1x2dx,\int \sqrt{1 - x^2} \, dx,

we can use a trigonometric substitution. The integrand suggests that we might use the substitution x=sinθx = \sin \theta, as this simplifies the square root expression. Here's the step-by-step solution:

Step 1: Substitution

Let:

x=sinθ.x = \sin \theta.

Then, the differential dxdx is:

dx=cosθdθ.dx = \cos \theta \, d\theta.

Also, the square root expression becomes:

1x2=1sin2θ=cosθ.\sqrt{1 - x^2} = \sqrt{1 - \sin^2 \theta} = \cos \theta.

Step 2: Substituting into the integral

Now, we substitute into the original integral:

1x2dx=cosθcosθdθ=cos2θdθ.\int \sqrt{1 - x^2} \, dx = \int \cos \theta \cdot \cos \theta \, d\theta = \int \cos^2 \theta \, d\theta.

Step 3: Using a trigonometric identity

To integrate cos2θ\cos^2 \theta, we can use the half-angle identity:

cos2θ=1+cos(2θ)2.\cos^2 \theta = \frac{1 + \cos(2\theta)}{2}.

Thus, the integral becomes:

cos2θdθ=1+cos(2θ)2dθ.\int \cos^2 \theta \, d\theta = \int \frac{1 + \cos(2\theta)}{2} \, d\theta.

Step 4: Integrating

Now, we can integrate term by term:

12dθ=θ2,\int \frac{1}{2} \, d\theta = \frac{\theta}{2},

and

cos(2θ)2dθ=sin(2θ)4.\int \frac{\cos(2\theta)}{2} \, d\theta = \frac{\sin(2\theta)}{4}.

So the integral becomes:

θ2+sin(2θ)4+C.\frac{\theta}{2} + \frac{\sin(2\theta)}{4} + C.

Step 5: Back-substitution

Now, we need to back-substitute in terms of xx. Recall that x=sinθx = \sin \theta, so θ=arcsin(x)\theta = \arcsin(x). Also, using the double angle identity, sin(2θ)=2sinθcosθ=2x1x2\sin(2\theta) = 2\sin \theta \cos \theta = 2x \sqrt{1 - x^2}.

Thus, the solution is:

arcsin(x)2+x1x22+C.\frac{\arcsin(x)}{2} + \frac{x \sqrt{1 - x^2}}{2} + C.

Final Answer:

1x2dx=arcsin(x)2+x1x22+C.\int \sqrt{1 - x^2} \, dx = \frac{\arcsin(x)}{2} + \frac{x \sqrt{1 - x^2}}{2} + C.

Would you like further clarification or to explore related concepts?


Further Questions:

  1. How do trigonometric substitutions help with integrals involving square roots?
  2. What are other examples of integrals that can be solved using trigonometric substitution?
  3. Can you solve integrals involving a2x2\sqrt{a^2 - x^2} using a similar method?
  4. How do we approach integrals of the form x2+a2dx\int \sqrt{x^2 + a^2} \, dx?
  5. What are the applications of integrals like 1x2dx\int \sqrt{1 - x^2} \, dx in physics?

Tip: When encountering an integral with 1x2\sqrt{1 - x^2}, try the substitution x=sinθx = \sin \theta to simplify the expression.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Trigonometric Substitution
Square Roots
Half-Angle Identity

Formulas

x = sin(θ)
dx = cos(θ) dθ
sqrt(1 - x^2) = cos(θ)
cos^2(θ) = (1 + cos(2θ)) / 2
sin(2θ) = 2sin(θ)cos(θ)

Theorems

Trigonometric Substitution
Double Angle Identity
Half-Angle Identity

Suitable Grade Level

Grades 12-14