Math Problem Statement
Let G left parenthesis x right parenthesis space equals space integral subscript h subscript 1 left parenthesis x right parenthesis end subscript superscript h subscript 2 left parenthesis x right parenthesis end superscript f left parenthesis t right parenthesis d t where bold italic h subscript bold 1 bold left parenthesis bold italic x bold right parenthesis bold space bold equals bold space bold pi bold space bold italic c bold italic o bold italic s bold left parenthesis bold space bold 2 bold pi bold space bold x bold right parenthesis amd bold italic h subscript bold 2 bold left parenthesis bold italic x bold right parenthesis bold space bold equals bold space bold 4 bold space bold italic t bold italic a bold italic n to the power of bold minus bold 1 end exponent bold left parenthesis bold italic x bold right parenthesis
and f left parenthesis t right parenthesis space equals space199 divided by left parenthesis space 1 space plus space t squared space right parenthesis then Find bold italic G bold left parenthesis bold 1 bold right parenthesis bold space bold plus bold space bold italic G bold apostrophe bold left parenthesis bold 1 bold right parenthesis bold space bold equals
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integral Calculus
Leibniz Rule
Trigonometry
Inverse Functions
Differentiation
Formulas
G(x) = ∫ from h1(x) to h2(x) f(t) dt
f(t) = 199 / (1 + t²)
h1(x) = π cos(2πx)
h2(x) = 4 tan⁻¹(x)
Leibniz Rule: d/dx ∫ from a(x) to b(x) f(t) dt = f(b(x))b'(x) - f(a(x))a'(x)
Theorems
Leibniz Rule for Differentiation of Integrals
Fundamental Theorem of Calculus
Suitable Grade Level
College Calculus (Calculus I and II)