Math Problem Statement

Solve the integral

Solution

The integral to solve is:

17x21dx\int \frac{1}{\sqrt{7x^2 - 1}} \, dx

Step-by-Step Solution:

To solve this integral, we will use a trigonometric substitution. Notice that the expression inside the square root is in the form of ax2ba x^2 - b, which suggests a substitution involving a hyperbolic function or a trigonometric function.

Step 1: Substitution

Consider the substitution:

x=17sec(θ)x = \frac{1}{\sqrt{7}} \sec(\theta)

This implies:

dx=17sec(θ)tan(θ)dθdx = \frac{1}{\sqrt{7}} \sec(\theta) \tan(\theta) \, d\theta

Substitute into the integral:

7x21=7(17sec(θ))21=717sec2(θ)1=sec2(θ)1=tan2(θ)7x^2 - 1 = 7 \left( \frac{1}{\sqrt{7}} \sec(\theta) \right)^2 - 1 = 7 \frac{1}{7} \sec^2(\theta) - 1 = \sec^2(\theta) - 1 = \tan^2(\theta)

Thus:

7x21=tan2(θ)=tan(θ)\sqrt{7x^2 - 1} = \sqrt{\tan^2(\theta)} = \tan(\theta)

Step 2: Rewrite the Integral

Substitute all of this into the integral:

17x21dx=1tan(θ)17sec(θ)tan(θ)dθ\int \frac{1}{\sqrt{7x^2 - 1}} \, dx = \int \frac{1}{\tan(\theta)} \cdot \frac{1}{\sqrt{7}} \sec(\theta) \tan(\theta) \, d\theta

This simplifies to:

17sec(θ)dθ\frac{1}{\sqrt{7}} \int \sec(\theta) \, d\theta

Step 3: Integrate

The integral of sec(θ)\sec(\theta) is:

sec(θ)dθ=lnsec(θ)+tan(θ)+C\int \sec(\theta) \, d\theta = \ln | \sec(\theta) + \tan(\theta) | + C

Thus:

17lnsec(θ)+tan(θ)+C\frac{1}{\sqrt{7}} \ln | \sec(\theta) + \tan(\theta) | + C

Step 4: Substitute Back

Recall the original substitution x=17sec(θ)x = \frac{1}{\sqrt{7}} \sec(\theta), therefore:

sec(θ)=7x,tan(θ)=7x21\sec(\theta) = \sqrt{7} x, \quad \tan(\theta) = \sqrt{7x^2 - 1}

Substitute back:

17ln7x+7x21+C\frac{1}{\sqrt{7}} \ln \left| \sqrt{7} x + \sqrt{7x^2 - 1} \right| + C

Final Answer:

17x21dx=17ln7x+7x21+C\int \frac{1}{\sqrt{7x^2 - 1}} \, dx = \frac{1}{\sqrt{7}} \ln \left| \sqrt{7} x + \sqrt{7x^2 - 1} \right| + C

Would you like more details or have any questions?

Related Questions:

  1. How do you solve integrals involving expressions like ax2+b\sqrt{ax^2 + b}?
  2. What is the integral of 1x2a2\frac{1}{x^2 - a^2}?
  3. How do you perform hyperbolic substitutions in integrals?
  4. Can you explain the integrals of hyperbolic functions like cosh(x)\cosh(x) and sinh(x)\sinh(x)?
  5. What is the difference between using trigonometric and hyperbolic substitutions for integrals?

Tip:

When integrating functions involving ax2b\sqrt{ax^2 - b} or similar forms, trigonometric substitutions are a powerful tool to simplify the integrals!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integral Calculus
Trigonometric Substitution

Formulas

Trigonometric substitution formula for integrals

Theorems

-

Suitable Grade Level

Advanced High School to College