Math Problem Statement

∫sin(7x)^-1dx

Solution

The integral

1sin(7x)dx\int \frac{1}{\sin(7x)} \, dx

can be rewritten as:

csc(7x)dx.\int \csc(7x) \, dx.

To solve this, we use a standard technique that involves a substitution to handle the form of the cosecant function.

Step 1: Use Substitution

Let:

u=7x    du=7dx    dx=du7.u = 7x \implies du = 7 \, dx \implies dx = \frac{du}{7}.

Substituting into the integral:

csc(7x)dx=csc(u)du7=17csc(u)du.\int \csc(7x) \, dx = \int \csc(u) \cdot \frac{du}{7} = \frac{1}{7} \int \csc(u) \, du.

Step 2: Integrate csc(u)\csc(u)

The integral of csc(u)\csc(u) is a standard result:

csc(u)du=lncsc(u)+cot(u)+C.\int \csc(u) \, du = -\ln |\csc(u) + \cot(u)| + C.

So, substituting back:

17csc(u)du=17lncsc(u)+cot(u)+C.\frac{1}{7} \int \csc(u) \, du = -\frac{1}{7} \ln |\csc(u) + \cot(u)| + C.

Step 3: Substitute u=7xu = 7x

Now replace uu with 7x7x:

17lncsc(7x)+cot(7x)+C.-\frac{1}{7} \ln |\csc(7x) + \cot(7x)| + C.

Final Answer:

csc(7x)dx=17lncsc(7x)+cot(7x)+C.\int \csc(7x) \, dx = -\frac{1}{7} \ln |\csc(7x) + \cot(7x)| + C.

Would you like further clarification on any step, or do you have any other questions?

Related Questions:

  1. How do you evaluate csc(x)dx\int \csc(x) \, dx?
  2. Can you solve csc2(7x)dx\int \csc^2(7x) \, dx?
  3. What is the derivative of csc(7x)\csc(7x)?
  4. How does substitution help in solving trigonometric integrals?
  5. Can you find sec(7x)dx\int \sec(7x) \, dx?

Tip:

Remember that integrals involving csc\csc or sec\sec often involve logarithmic forms, so be familiar with these standard results!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Trigonometry
Substitution

Formulas

Integral of cosecant function

Theorems

-

Suitable Grade Level

Advanced High School / College