Math Problem Statement

Resolver Integral impropia

Resolve the improper integral \(\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx\)

Solution

The given improper integral is:

1exxdx.\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx.

To solve this, let's follow these steps:

Step 1: Substitution

Use the substitution u=xu = \sqrt{x}, which implies:

x=u2anddx=2udu.x = u^2 \quad \text{and} \quad dx = 2u \, du.

Changing the limits:

  • When x=1x = 1, u=1=1u = \sqrt{1} = 1.
  • When x=x = \infty, u=u = \infty.

Substituting into the integral:

1exxdx=1euu2udu=21eudu.\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx = \int_{1}^{\infty} \frac{e^{-u}}{u} \cdot 2u \, du = 2\int_{1}^{\infty} e^{-u} \, du.

Step 2: Solve the Integral

Now, solve the simplified integral:

21eudu.2\int_{1}^{\infty} e^{-u} \, du.

Evaluating this:

1eudu=[eu]1.\int_{1}^{\infty} e^{-u} \, du = \left[-e^{-u}\right]_{1}^{\infty}.

Calculating the limits:

[eu]1=0(e1)=e1.\left[-e^{-u}\right]_{1}^{\infty} = 0 - (-e^{-1}) = e^{-1}.

Therefore:

21eudu=2e1=2e.2\int_{1}^{\infty} e^{-u} \, du = 2 \cdot e^{-1} = \frac{2}{e}.

Final Answer

1exxdx=2e.\int_{1}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx = \frac{2}{e}.

Would you like further explanation or have any questions? Here are some related questions:

  1. How do you handle improper integrals with different types of convergence?
  2. What are the criteria for an improper integral to converge?
  3. How can substitution methods simplify complex integrals?
  4. What are some common techniques for evaluating improper integrals involving exponential functions?
  5. How do you determine if an improper integral diverges?

Tip: Always check if the integral converges before evaluating it, especially when dealing with infinite limits or undefined regions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper Integrals
Substitution Method
Exponential Decay

Formulas

Substitution u = \sqrt{x}, dx = 2u \, du
\int_{1}^{\infty} e^{-u} \, du = [-e^{-u}]_{1}^{\infty}
\frac{2}{e} = 2 \cdot e^{-1}

Theorems

Convergence of Improper Integrals
Exponential Function Integration

Suitable Grade Level

University-Level Calculus