Math Problem Statement

Find the value of x if 3 sinh x - 2 cosh x - 2 = 0 using hyperbolic function formula.

Solution

To solve this equation, 3sinhx2coshx2=03 \sinh x - 2 \cosh x - 2 = 0, we will use hyperbolic identities and solve for xx step-by-step.

Given:
3sinhx2coshx2=03 \sinh x - 2 \cosh x - 2 = 0

Step 1: Rewrite using hyperbolic definitions

We know that: sinhx=exex2andcoshx=ex+ex2.\sinh x = \frac{e^x - e^{-x}}{2} \quad \text{and} \quad \cosh x = \frac{e^x + e^{-x}}{2}. Substitute these into the equation:

3(exex2)2(ex+ex2)2=03 \left(\frac{e^x - e^{-x}}{2}\right) - 2 \left(\frac{e^x + e^{-x}}{2}\right) - 2 = 0

Step 2: Simplify the expression

Combine terms by multiplying through by 2 to eliminate the denominators:

3(exex)2(ex+ex)4=03(e^x - e^{-x}) - 2(e^x + e^{-x}) - 4 = 0

Expanding each term gives:

3ex3ex2ex2ex4=03e^x - 3e^{-x} - 2e^x - 2e^{-x} - 4 = 0

Combine like terms:

[ (e^x - 5e^{-x}) - 4

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Hyperbolic Functions
Algebra

Formulas

sinh x = (e^x - e^(-x)) / 2
cosh x = (e^x + e^(-x)) / 2

Theorems

-

Suitable Grade Level

Undergraduate Level