Math Problem Statement

Solve for x given that log2(5x) - log4(2x) = 3

Solution

We are given the equation:

log2(5x)log4(2x)=3\log_2(5x) - \log_4(2x) = 3

Step 1: Express log4(2x)\log_4(2x) in terms of base 2

We can use the change of base formula:

logb(a)=logc(a)logc(b)\log_b(a) = \frac{\log_c(a)}{\log_c(b)}

In this case, converting log4(2x)\log_4(2x) to base 2:

log4(2x)=log2(2x)log2(4)=log2(2x)2\log_4(2x) = \frac{\log_2(2x)}{\log_2(4)} = \frac{\log_2(2x)}{2}

Thus, the equation becomes:

log2(5x)12log2(2x)=3\log_2(5x) - \frac{1}{2} \log_2(2x) = 3

Step 2: Simplify the logarithms

Next, apply the logarithmic identity logb(ab)=logb(a)+logb(b)\log_b(ab) = \log_b(a) + \log_b(b):

log2(5x)=log2(5)+log2(x)\log_2(5x) = \log_2(5) + \log_2(x) log2(2x)=log2(2)+log2(x)=1+log2(x)\log_2(2x) = \log_2(2) + \log_2(x) = 1 + \log_2(x)

Substituting these into the equation:

(log2(5)+log2(x))12(1+log2(x))=3\left(\log_2(5) + \log_2(x)\right) - \frac{1}{2}(1 + \log_2(x)) = 3

Step 3: Solve for log2(x)\log_2(x)

Distribute the 12\frac{1}{2} in the second term:

log2(5)+log2(x)1212log2(x)=3\log_2(5) + \log_2(x) - \frac{1}{2} - \frac{1}{2}\log_2(x) = 3

Combine like terms:

log2(5)+(112)log2(x)12=3\log_2(5) + \left(1 - \frac{1}{2}\right)\log_2(x) - \frac{1}{2} = 3

Simplify further:

log2(5)+12log2(x)12=3\log_2(5) + \frac{1}{2} \log_2(x) - \frac{1}{2} = 3

Now, isolate log2(x)\log_2(x):

12log2(x)=3+12log2(5)\frac{1}{2} \log_2(x) = 3 + \frac{1}{2} - \log_2(5)

12log2(x)=72log2(5)\frac{1}{2} \log_2(x) = \frac{7}{2} - \log_2(5)

Multiply both sides by 2:

log2(x)=72log2(5)\log_2(x) = 7 - 2\log_2(5)

Step 4: Solve for xx

Exponentiate both sides to remove the logarithm:

x=272log2(5)=2722log2(5)x = 2^{7 - 2\log_2(5)} = 2^7 \cdot 2^{-2\log_2(5)}

Since 2log2(a)=a2^{\log_2(a)} = a, this becomes:

x=12852x = 128 \cdot 5^{-2}

x=128125=12825x = 128 \cdot \frac{1}{25} = \frac{128}{25}

Thus, the solution is:

x=12825x = \frac{128}{25}

Let me know if you'd like further clarification on any part of this process!

Related Questions:

  1. How do you change the base of a logarithm?
  2. What is the logarithmic identity for logb(ab)\log_b(ab)?
  3. How do you simplify logarithmic expressions with coefficients?
  4. How can you solve logarithmic equations using properties of exponents?
  5. What is the purpose of the change of base formula?

Tip:

When dealing with logarithms of different bases, converting everything to a common base simplifies the process tremendously.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Change of Base Formula
Properties of Logarithms
Exponents

Formulas

log_b(a) = log_c(a) / log_c(b)
log_b(ab) = log_b(a) + log_b(b)
Exponentiation: a^log_b(a) = b

Theorems

Change of Base Formula
Logarithmic Properties
Exponentiation Theorem

Suitable Grade Level

Grades 10-12