Math Problem Statement

Solve the first-order linear differential equation dy/dx + 2xy = sin(x) + 3x^2.

Solution

The equation in the image is:

dydx+2xy=sinx+3x2\frac{dy}{dx} + 2xy = \sin x + 3x^2

This is a first-order linear differential equation of the form:

dydx+P(x)y=Q(x),\frac{dy}{dx} + P(x)y = Q(x), where:

  • P(x)=2xP(x) = 2x,
  • Q(x)=sinx+3x2Q(x) = \sin x + 3x^2.

We solve this using the method of integrating factors.


Step 1: Find the integrating factor μ(x)\mu(x)

The integrating factor is given by:

μ(x)=eP(x)dx=e2xdx.\mu(x) = e^{\int P(x) \, dx} = e^{\int 2x \, dx}.

  1. Compute 2xdx\int 2x \, dx: 2xdx=x2.\int 2x \, dx = x^2.

  2. Therefore: μ(x)=ex2.\mu(x) = e^{x^2}.


Step 2: Multiply through by the integrating factor

Multiply the entire equation by ex2e^{x^2}:

ex2dydx+2xex2y=ex2(sinx+3x2).e^{x^2} \frac{dy}{dx} + 2x e^{x^2} y = e^{x^2} (\sin x + 3x^2).

Notice the left-hand side is the derivative of ex2ye^{x^2} y:

ddx(ex2y)=ex2sinx+3x2ex2.\frac{d}{dx} \left( e^{x^2} y \right) = e^{x^2} \sin x + 3x^2 e^{x^2}.


Step 3: Integrate both sides

Integrate both sides with respect to xx:

ddx(ex2y)dx=ex2sinxdx+3x2ex2dx.\int \frac{d}{dx} \left( e^{x^2} y \right) \, dx = \int e^{x^2} \sin x \, dx + \int 3x^2 e^{x^2} \, dx.

The left-hand side simplifies to:

ex2y.e^{x^2} y.

Thus:

ex2y=ex2sinxdx+3x2ex2dx+C,e^{x^2} y = \int e^{x^2} \sin x \, dx + \int 3x^2 e^{x^2} \, dx + C, where CC is the constant of integration.


Step 4: Solve for yy

Divide through by ex2e^{x^2}:

y=1ex2[ex2sinxdx+3x2ex2dx+C].y = \frac{1}{e^{x^2}} \left[ \int e^{x^2} \sin x \, dx + \int 3x^2 e^{x^2} \, dx + C \right].


Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differential Equations
Integrating Factor Method
First-Order Linear Equations

Formulas

Integrating Factor: μ(x) = e^(∫P(x) dx)
General Solution: y = (1/μ(x)) ∫[μ(x)Q(x)] dx + C

Theorems

First-Order Linear Differential Equation Theorem

Suitable Grade Level

Undergraduate Calculus (Grade 12+)