Math Problem Statement

(⁸/¹²⁵) - ½ + 27 - ⅓- 49 ½

Solution

Let's solve the expression step by step:

(8125)12+27134912\left( \frac{8}{125} \right) - \frac{1}{2} + 27 - \frac{1}{3} - 49 \frac{1}{2}

  1. Convert mixed numbers to improper fractions:

    • 4912=49+12=99249 \frac{1}{2} = 49 + \frac{1}{2} = \frac{99}{2}
  2. Rewrite the expression: 812512+2713992\frac{8}{125} - \frac{1}{2} + 27 - \frac{1}{3} - \frac{99}{2}

  3. Combine like terms:

    • 8125\frac{8}{125} stays as it is.
    • Combine the constants 2749=2227 - 49 = -22.

    Now the expression is: 8125129921322\frac{8}{125} - \frac{1}{2} - \frac{99}{2} - \frac{1}{3} - 22

  4. Combine the fractions with a common denominator:

    • For 12\frac{1}{2} and 992\frac{99}{2}: 12+992=1002=50\frac{1}{2} + \frac{99}{2} = \frac{100}{2} = 50.

    Now the expression is: 8125501322\frac{8}{125} - 50 - \frac{1}{3} - 22

  5. Combine constants:

    • 5022=72-50 - 22 = -72.

    So the expression is: 81251372\frac{8}{125} - \frac{1}{3} - 72

  6. Combine 8125\frac{8}{125} and 13\frac{1}{3} using a common denominator of 375: 8125=24375,13=125375\frac{8}{125} = \frac{24}{375}, \quad \frac{1}{3} = \frac{125}{375} Now subtract: 24375125375=101375\frac{24}{375} - \frac{125}{375} = \frac{-101}{375}

  7. The final expression is: 10137572\frac{-101}{375} - 72

  8. Convert 101375\frac{-101}{375} to a decimal: 1013750.2693\frac{-101}{375} \approx -0.2693

  9. Add to 72-72: 720.2693=72.2693-72 - 0.2693 = -72.2693

Thus, the final result is approximately 72.2693\boxed{-72.2693}.

Do you want further details or have any questions?

Here are 5 related questions:

  1. How do you simplify mixed numbers to improper fractions?
  2. What is the process of finding a common denominator for fractions?
  3. How do you convert a fraction to a decimal?
  4. How do constants affect the final result in arithmetic expressions?
  5. What role does the order of operations play in solving this type of expression?

Tip: When working with fractions and decimals together, converting all terms to decimals can often simplify calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Fractions
Mixed Numbers
Arithmetic
Decimal Conversion

Formulas

Converting mixed numbers to improper fractions
Finding common denominators for fractions
Converting fractions to decimals

Theorems

-

Suitable Grade Level

Grades 6-8