Math Problem Statement

2^3 x (3^3 x 2^-2)/(3^-2 x 2^4)^3

Solution

To solve the expression

23×(33×2232×24)3,2^3 \times \left(\frac{3^3 \times 2^{-2}}{3^{-2} \times 2^4}\right)^3,

we can follow these steps:

Step 1: Simplify Inside the Parentheses

First, look at the expression inside the parentheses:

33×2232×24.\frac{3^3 \times 2^{-2}}{3^{-2} \times 2^4}.

Simplify the numerator:

  • 33=273^3 = 27
  • 22=122=142^{-2} = \frac{1}{2^2} = \frac{1}{4}

Therefore, the numerator becomes 27×14=27427 \times \frac{1}{4} = \frac{27}{4}.

Simplify the denominator:

  • 32=132=193^{-2} = \frac{1}{3^2} = \frac{1}{9}
  • 24=162^4 = 16

Therefore, the denominator becomes 19×16=169\frac{1}{9} \times 16 = \frac{16}{9}.

Now, substitute back:

33×2232×24=274169.\frac{3^3 \times 2^{-2}}{3^{-2} \times 2^4} = \frac{\frac{27}{4}}{\frac{16}{9}}.

Step 2: Divide the Fractions

274169=274×916=27×94×16=24364.\frac{\frac{27}{4}}{\frac{16}{9}} = \frac{27}{4} \times \frac{9}{16} = \frac{27 \times 9}{4 \times 16} = \frac{243}{64}.

Step 3: Apply the Cube to the Fraction

Now, cube the result from inside the parentheses:

(24364)3=2433643.\left(\frac{243}{64}\right)^3 = \frac{243^3}{64^3}.

Calculating the powers:

  • 2433=(35)3=315243^3 = (3^5)^3 = 3^{15}
  • 643=(26)3=21864^3 = (2^6)^3 = 2^{18}

So,

(24364)3=315218.\left(\frac{243}{64}\right)^3 = \frac{3^{15}}{2^{18}}.

Step 4: Multiply by 232^3

Now, go back to the original expression:

23×315218.2^3 \times \frac{3^{15}}{2^{18}}.

=23×315218.= \frac{2^3 \times 3^{15}}{2^{18}}.

Step 5: Combine Exponents

=3152183=315215.= \frac{3^{15}}{2^{18-3}} = \frac{3^{15}}{2^{15}}.

Final Answer

315215=(32)15.\frac{3^{15}}{2^{15}} = \left(\frac{3}{2}\right)^{15}.

Would you like more details or have any questions?

Here are five related questions to consider:

  1. How would you simplify (42×5123×53)2\left(\frac{4^2 \times 5^{-1}}{2^{-3} \times 5^3}\right)^2?
  2. What is the result of 63×2433×22\frac{6^3 \times 2^{-4}}{3^{-3} \times 2^2}?
  3. How do you deal with negative exponents in complex fractions?
  4. Can you express (a3×b2)2×(a1×b4)1(a^3 \times b^{-2})^2 \times (a^{-1} \times b^4)^{-1} in a simplified form?
  5. How would the approach change if the original problem had a base of zero for any of the exponents?

Tip: Remember, when working with exponents, handling the negative exponents first can simplify the process, making multiplication and division more straightforward.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Fractional Exponents
Negative Exponents

Formulas

Exponent Rules
Fractional Exponent Rules

Theorems

-

Suitable Grade Level

Grades 9-12