Math Problem Statement

We start by solving the eigenvalue problem for 𝐴 A, which involves solving the characteristic equation:

det ( 𝐴 − 𝜆 𝐼 )

0 det(A−λI)=0 where 𝜆 λ is the eigenvalue and 𝐼 I is the identity matrix.

𝐴 − 𝜆 𝐼

( 0 − 𝜆 1 − 2 − 3 − 𝜆 ) A−λI=( 0−λ −2 ​

1 −3−λ ​ ) det ( 𝐴 − 𝜆 𝐼 )

det ( − 𝜆 1 − 2 − 3 − 𝜆 ) det(A−λI)=det( −λ −2 ​

1 −3−λ ​ )

Solution

To solve the eigenvalue problem for matrix AA, we need to compute the determinant of the matrix AλIA - \lambda I, where AA is given as:

A=(0123)A = \begin{pmatrix} 0 & 1 \\ -2 & -3 \end{pmatrix}

The identity matrix II is:

I=(1001)I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Step 1: Construct AλIA - \lambda I

Now, subtract λI\lambda I from matrix AA:

= \begin{pmatrix} 0 - \lambda & 1 \\ -2 & -3 - \lambda \end{pmatrix} = \begin{pmatrix} -\lambda & 1 \\ -2 & -3 - \lambda \end{pmatrix}$$ ### Step 2: Compute the determinant The determinant of the matrix $$A - \lambda I$$ is: $$\text{det}(A - \lambda I) = \text{det} \begin{pmatrix} -\lambda & 1 \\ -2 & -3 - \lambda \end{pmatrix}$$ Using the determinant formula for a 2x2 matrix $$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$, where the determinant is $$ad - bc$$, we calculate: $$\text{det}(A - \lambda I) = (-\lambda)(-3 - \lambda) - (1)(-2)$$ $$= \lambda(3 + \lambda) + 2$$ $$= \lambda^2 + 3\lambda + 2$$ ### Step 3: Solve the characteristic equation Set the determinant equal to zero to solve for the eigenvalues $$\lambda$$: $$\lambda^2 + 3\lambda + 2 = 0$$ Factor the quadratic equation: $$(\lambda + 1)(\lambda + 2) = 0$$ Thus, the eigenvalues are: $$\lambda_1 = -1 \quad \text{and} \quad \lambda_2 = -2$$ ### Conclusion: The eigenvalues of the matrix $$A$$ are $$\lambda_1 = -1$$ and $$\lambda_2 = -2$$. Do you want to see the steps for finding the eigenvectors or have any other questions? Here are some related questions: 1. What are the eigenvectors corresponding to each eigenvalue? 2. How do we interpret the eigenvalues in terms of matrix transformations? 3. What are some applications of eigenvalues and eigenvectors in real-world problems? 4. Can a matrix have complex eigenvalues, and under what conditions? 5. How do diagonalization and eigenvalues relate to each other? **Tip**: Always check if the matrix is symmetric, as symmetric matrices have real eigenvalues.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Eigenvectors
Determinants
Matrices

Formulas

det(A - λI) = 0
Determinant of 2x2 matrix: det(A) = ad - bc
Quadratic equation: λ^2 + 3λ + 2 = 0

Theorems

Eigenvalue theorem
Determinant formula for 2x2 matrices

Suitable Grade Level

Undergraduate level (Grades 11-12 or college level)