Math Problem Statement

حل المسألة التاليه بالخطوات

Solution

The problem in the image involves finding the eigenvalues and eigenvectors of a 2x2 matrix AA. I'll walk you through the steps based on the image provided.

Step 1: Matrix AA

The matrix AA given is: A=(2213)A = \begin{pmatrix} 2 & 2 \\ 1 & 3 \end{pmatrix}

Step 2: Finding the Eigenvalues

To find the eigenvalues λ\lambda, we solve the characteristic equation: det(AλI)=0\det(A - \lambda I) = 0 Here, II is the identity matrix: I=(1001)I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} So, AλIA - \lambda I becomes: AλI=(2λ213λ)A - \lambda I = \begin{pmatrix} 2 - \lambda & 2 \\ 1 & 3 - \lambda \end{pmatrix} The determinant of this matrix is: det(AλI)=(2λ)(3λ)(2)(1)\det(A - \lambda I) = (2 - \lambda)(3 - \lambda) - (2)(1) Expanding the determinant: det(AλI)=(2λ)(3λ)2=(65λ+λ2)2=λ25λ+4\det(A - \lambda I) = (2 - \lambda)(3 - \lambda) - 2 = (6 - 5\lambda + \lambda^2) - 2 = \lambda^2 - 5\lambda + 4 Setting the determinant to zero to find the eigenvalues: λ25λ+4=0\lambda^2 - 5\lambda + 4 = 0 This quadratic equation can be factored as: (λ1)(λ4)=0(\lambda - 1)(\lambda - 4) = 0 So, the eigenvalues are: λ1=1,λ2=4\lambda_1 = 1, \quad \lambda_2 = 4

Step 3: Finding the Eigenvectors

Eigenvector for λ1=1\lambda_1 = 1:

Substitute λ=1\lambda = 1 into (AλI)v=0(A - \lambda I)\mathbf{v} = 0: (AI)v=(1212)(x1x2)=0(A - I)\mathbf{v} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 This simplifies to the system of equations: x1+2x2=0x_1 + 2x_2 = 0 The solution is: v1=(21)\mathbf{v}_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}

Eigenvector for λ2=4\lambda_2 = 4:

Substitute λ=4\lambda = 4 into (AλI)v=0(A - \lambda I)\mathbf{v} = 0: (A4I)v=(2211)(x1x2)=0(A - 4I)\mathbf{v} = \begin{pmatrix} -2 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 0 This simplifies to the system of equations: 2x1+2x2=0-2x_1 + 2x_2 = 0 The solution is: v2=(11)\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}

Final Answer

  • The eigenvalues are λ1=1\lambda_1 = 1 and λ2=4\lambda_2 = 4.
  • The corresponding eigenvectors are:
    • For λ1=1\lambda_1 = 1, the eigenvector is v1=(21)\mathbf{v}_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}.
    • For λ2=4\lambda_2 = 4, the eigenvector is v2=(11)\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.

Would you like more details, or do you have any questions?

Related Questions:

  1. How do you verify if a vector is an eigenvector of a matrix?
  2. What is the geometric interpretation of eigenvalues and eigenvectors?
  3. Can a matrix have complex eigenvalues and eigenvectors? If yes, when?
  4. What does it mean if a matrix has repeated eigenvalues?
  5. How are eigenvalues used in diagonalization of matrices?
  6. What are some applications of eigenvalues and eigenvectors in real-world problems?
  7. How do you find eigenvalues and eigenvectors for larger matrices (e.g., 3x3)?
  8. Can a non-square matrix have eigenvalues and eigenvectors?

Tip:

Eigenvectors corresponding to different eigenvalues are linearly independent, which is useful in matrix diagonalization.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Matrix Algebra
Eigenvalues
Eigenvectors
Determinants

Formulas

Characteristic equation
Eigenvalue-eigenvector equation

Theorems

-

Suitable Grade Level

Advanced High School