Math Problem Statement

f(x)= x-4 g(x)= x^2-8x+16 solve it in composite function

Solution

To solve a composite function problem involving f(x)f(x) and g(x)g(x), we first need to find either f(g(x))f(g(x)) or g(f(x))g(f(x)). Here's how we can compute each:

1. Definitions:

  • f(x)=x4f(x) = x - 4
  • g(x)=x28x+16g(x) = x^2 - 8x + 16

2. Calculating the Composite Functions:

f(g(x))f(g(x)):

  1. Substitute g(x)g(x) into ff: f(g(x))=f(x28x+16)f(g(x)) = f(x^2 - 8x + 16)
  2. Using the formula for ff, where f(x)=x4f(x) = x - 4, replace xx with g(x)g(x): f(g(x))=(x28x+16)4f(g(x)) = (x^2 - 8x + 16) - 4
  3. Simplify the expression: f(g(x))=x28x+12f(g(x)) = x^2 - 8x + 12

g(f(x))g(f(x)):

  1. Substitute f(x)f(x) into gg: g(f(x))=g(x4)g(f(x)) = g(x - 4)
  2. Using the formula for gg, where g(x)=x28x+16g(x) = x^2 - 8x + 16, replace xx with f(x)f(x): g(f(x))=(x4)28(x4)+16g(f(x)) = (x - 4)^2 - 8(x - 4) + 16
  3. Expand the squared term and simplify: g(f(x))=(x28x+16)8(x4)+16g(f(x)) = (x^2 - 8x + 16) - 8(x - 4) + 16 g(f(x))=x28x+168x+32+16g(f(x)) = x^2 - 8x + 16 - 8x + 32 + 16 g(f(x))=x216x+64g(f(x)) = x^2 - 16x + 64

3. Summary:

  • f(g(x))=x28x+12f(g(x)) = x^2 - 8x + 12
  • g(f(x))=x216x+64g(f(x)) = x^2 - 16x + 64

Would you like a deeper breakdown of each step or have any questions?

Related Questions:

  1. What happens if we evaluate f(g(a))f(g(a)) for a specific value of aa?
  2. Can we find the domain and range of f(g(x))f(g(x))?
  3. What are the points of intersection between f(g(x))f(g(x)) and g(f(x))g(f(x))?
  4. How does the behavior of ff and gg change the composite functions?
  5. Can we find the inverse of f(g(x))f(g(x))?

Tip:

When finding composite functions, always substitute carefully and simplify step-by-step to avoid errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Composite Functions
Quadratic Functions

Formulas

f(g(x)) = f(x^2 - 8x + 16) = x^2 - 8x + 12
g(f(x)) = g(x - 4) = x^2 - 16x + 64

Theorems

Composite Function Theorem

Suitable Grade Level

Grades 9-11