Math Problem Statement

f(x)=8x+18 and g(x)=x2+4x−12 .

  1. Find f(g(x))=

equation editorEquation Editor

  1. Find g(f(x))=

equation editorEquation Editor

  1. Find f(f(x))=

equation editorEquation Editor

  1. Find g(g(x))=

Solution

Let's go step by step to find each of these composite functions:

1. Find f(g(x))f(g(x))

Given:

  • f(x)=8x+18f(x) = 8x + 18
  • g(x)=x2+4x12g(x) = x^2 + 4x - 12

To find f(g(x))f(g(x)), substitute g(x)g(x) into f(x)f(x):

f(g(x))=f(x2+4x12)=8(x2+4x12)+18f(g(x)) = f(x^2 + 4x - 12) = 8(x^2 + 4x - 12) + 18

Now simplify:

f(g(x))=8x2+32x96+18=8x2+32x78f(g(x)) = 8x^2 + 32x - 96 + 18 = 8x^2 + 32x - 78

So,

f(g(x))=8x2+32x78f(g(x)) = 8x^2 + 32x - 78

2. Find g(f(x))g(f(x))

To find g(f(x))g(f(x)), substitute f(x)=8x+18f(x) = 8x + 18 into g(x)g(x):

g(f(x))=g(8x+18)=(8x+18)2+4(8x+18)12g(f(x)) = g(8x + 18) = (8x + 18)^2 + 4(8x + 18) - 12

Now expand and simplify:

(8x+18)2=64x2+288x+324(8x + 18)^2 = 64x^2 + 288x + 324 4(8x+18)=32x+724(8x + 18) = 32x + 72

So,

g(f(x))=64x2+288x+324+32x+7212g(f(x)) = 64x^2 + 288x + 324 + 32x + 72 - 12 g(f(x))=64x2+320x+384g(f(x)) = 64x^2 + 320x + 384

3. Find f(f(x))f(f(x))

To find f(f(x))f(f(x)), substitute f(x)=8x+18f(x) = 8x + 18 into itself:

f(f(x))=f(8x+18)=8(8x+18)+18f(f(x)) = f(8x + 18) = 8(8x + 18) + 18

Simplify:

f(f(x))=64x+144+18=64x+162f(f(x)) = 64x + 144 + 18 = 64x + 162

So,

f(f(x))=64x+162f(f(x)) = 64x + 162

4. Find g(g(x))g(g(x))

To find g(g(x))g(g(x)), substitute g(x)=x2+4x12g(x) = x^2 + 4x - 12 into itself:

g(g(x))=g(x2+4x12)=(x2+4x12)2+4(x2+4x12)12g(g(x)) = g(x^2 + 4x - 12) = (x^2 + 4x - 12)^2 + 4(x^2 + 4x - 12) - 12

First, expand (x2+4x12)2(x^2 + 4x - 12)^2:

(x2+4x12)2=x4+8x38x296x+144(x^2 + 4x - 12)^2 = x^4 + 8x^3 - 8x^2 - 96x + 144

Now expand 4(x2+4x12)4(x^2 + 4x - 12):

4(x2+4x12)=4x2+16x484(x^2 + 4x - 12) = 4x^2 + 16x - 48

Now simplify the expression:

g(g(x))=x4+8x38x296x+144+4x2+16x4812g(g(x)) = x^4 + 8x^3 - 8x^2 - 96x + 144 + 4x^2 + 16x - 48 - 12

g(g(x))=x4+8x34x280x+84g(g(x)) = x^4 + 8x^3 - 4x^2 - 80x + 84

So,

g(g(x))=x4+8x34x280x+84g(g(x)) = x^4 + 8x^3 - 4x^2 - 80x + 84


Do you want further details on any of these steps or explanations?

Here are 5 related questions to explore:

  1. How do you find the domain of a composite function like f(g(x))f(g(x))?
  2. What is the difference between f(g(x))f(g(x)) and g(f(x))g(f(x))?
  3. Can a composite function ever be the same as its component functions?
  4. How do you interpret the result of a composite function graphically?
  5. What happens to the degree of a polynomial when composing two polynomial functions?

Tip: When composing functions, always ensure you simplify step by step to avoid errors in expansion and combining like terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Composite Functions
Quadratic Equations

Formulas

f(x) = 8x + 18
g(x) = x^2 + 4x - 12
f(g(x)) = f(x^2 + 4x - 12) = 8x^2 + 32x - 78
g(f(x)) = g(8x + 18) = 64x^2 + 320x + 384
f(f(x)) = 64x + 162
g(g(x)) = x^4 + 8x^3 - 4x^2 - 80x + 84

Theorems

Function Composition
Polynomial Expansion

Suitable Grade Level

Grades 10-12