Math Problem Statement

3,56/7+5/456/21+5/7-15/35

(22/33-19/38+14/16)*(22/33+7/28)

(4/3+1/5)-(4/155/16-4/1528/5)0,6+3/50,25

Solution

Let's solve each of the expressions step by step:

1. Expression:

3.5×67+54×5621+5715353.5 \times \frac{6}{7} + \frac{5}{4} \times \frac{56}{21} + \frac{5}{7} - \frac{15}{35}

Step-by-step:

  • 3.5×67=33.5 \times \frac{6}{7} = 3
  • 54×5621=28084=103\frac{5}{4} \times \frac{56}{21} = \frac{280}{84} = \frac{10}{3}
  • 57=57\frac{5}{7} = \frac{5}{7}
  • 1535=37\frac{15}{35} = \frac{3}{7}

Thus, the expression becomes: 3+103+57373 + \frac{10}{3} + \frac{5}{7} - \frac{3}{7}

Simplifying: 3+103+273 + \frac{10}{3} + \frac{2}{7}

To add these, we need a common denominator for 33, which is 21: 3=6321,103=7021,27=6213 = \frac{63}{21}, \quad \frac{10}{3} = \frac{70}{21}, \quad \frac{2}{7} = \frac{6}{21}

Adding them: 63+70+621=13921\frac{63 + 70 + 6}{21} = \frac{139}{21}

So, the result is: 13921or approximately 6.62\boxed{\frac{139}{21}} \quad \text{or approximately } 6.62


2. Expression:

(22331938+1416)×(2233+728)\left( \frac{22}{33} - \frac{19}{38} + \frac{14}{16} \right) \times \left( \frac{22}{33} + \frac{7}{28} \right)

Step-by-step:

  • 2233=23\frac{22}{33} = \frac{2}{3}, and 1416=78\frac{14}{16} = \frac{7}{8}
  • So, the first part becomes: 231938+78\frac{2}{3} - \frac{19}{38} + \frac{7}{8} Finding a common denominator: 23=152228,1938=114228,78=199.5228\frac{2}{3} = \frac{152}{228}, \quad \frac{19}{38} = \frac{114}{228}, \quad \frac{7}{8} = \frac{199.5}{228} So the expression becomes: 152114+199.5228=237.5228\frac{152-114+199.5}{228} = \frac{237.5}{228}
  • For the second part: 23+728\frac{2}{3} + \frac{7}{28} Common denominator gives: 23=5684,728=2184\frac{2}{3} = \frac{56}{84}, \quad \frac{7}{28} = \frac{21}{84} So, this becomes: 56+2184=7784=1112\frac{56+21}{84} = \frac{77}{84} = \frac{11}{12}
  • Now multiplying: 237.5228×1112=237.5×11228×12\frac{237.5}{228} \times \frac{11}{12} = \frac{237.5 \times 11}{228 \times 12}

The result is: 2612.52736or approximately 0.954\boxed{\frac{2612.5}{2736}} \quad \text{or approximately } 0.954


3. Expression:

(43+15)(415×516415×285)×0.6+35×0.25\left( \frac{4}{3} + \frac{1}{5} \right) - \left( \frac{4}{15} \times \frac{5}{16} - \frac{4}{15} \times \frac{28}{5} \right) \times 0.6 + \frac{3}{5} \times 0.25

Step-by-step:

  • 43+15=2015+315=2315\frac{4}{3} + \frac{1}{5} = \frac{20}{15} + \frac{3}{15} = \frac{23}{15}
  • 415×516=20240=112\frac{4}{15} \times \frac{5}{16} = \frac{20}{240} = \frac{1}{12}
  • 415×285=11275\frac{4}{15} \times \frac{28}{5} = \frac{112}{75}

Now simplifying: [ \frac{1}{12} - \frac{112}{75} = \frac{25}{300} \text, which gives tan fold

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Arithmetic
Fractions
Multiplication
Addition
Subtraction

Formulas

Multiplication of fractions: (a/b) * (c/d) = (a*c) / (b*d)
Addition and subtraction of fractions: Find a common denominator

Theorems

Basic arithmetic operations with fractions

Suitable Grade Level

Grades 9-11