Math Problem Statement

Solve

Maximize x^α y^β subject to x + 2y ≤ 2, x > 0, y > 0, where α, β > 0 and α + β ≤ 1.

Solution

The optimization problem in the image involves maximizing a Cobb-Douglas type function xαyβx^\alpha y^\beta, subject to a set of linear constraints. Here’s the step-by-step solution:

Problem

Maximize:
z=xαyβz = x^\alpha y^\beta
Subject to:
x+2y2,x>0,y>0,α>0,β>0,α+β1.x + 2y \leq 2, \quad x > 0, \quad y > 0, \quad \alpha > 0, \quad \beta > 0, \quad \alpha + \beta \leq 1.


Step 1: Transform to Logarithmic Form

Taking the natural logarithm of the objective function: lnz=αlnx+βlny.\ln z = \alpha \ln x + \beta \ln y. Let u=lnzu = \ln z, v=lnxv = \ln x, and w=lnyw = \ln y, so: u=αv+βw.u = \alpha v + \beta w. This simplifies the problem to maximizing uu under the given constraints.


Step 2: Solve the Constraints

From the main constraint x+2y2x + 2y \leq 2, substitute y=2x2y = \frac{2 - x}{2} for valid values of xx. Note that x>0x > 0 and y>0y > 0, which means: 0<x<2.0 < x < 2.


Step 3: Substitute into the Objective

The objective is z=xαyβz = x^\alpha y^\beta. Substituting y=2x2y = \frac{2 - x}{2}: z=xα(2x2)β.z = x^\alpha \left(\frac{2 - x}{2}\right)^\beta.

This can be written as: z=xα(2x)β2β.z = \frac{x^\alpha (2 - x)^\beta}{2^\beta}.


Step 4: Take the First-Order Condition

Maximize zz by taking the derivative with respect to xx. Let: f(x)=xα(2x)β.f(x) = x^\alpha (2 - x)^\beta.

The derivative is: f(x)=αxα1(2x)ββxα(2x)β1.f'(x) = \alpha x^{\alpha - 1} (2 - x)^\beta - \beta x^\alpha (2 - x)^{\beta - 1}.

Setting f(x)=0f'(x) = 0: αxα1(2x)β=βxα(2x)β1.\alpha x^{\alpha - 1} (2 - x)^\beta = \beta x^\alpha (2 - x)^{\beta - 1}.

Divide through by xα1(2x)β1x^{\alpha - 1} (2 - x)^{\beta - 1} (valid for x>0x > 0 and 2x>02 - x > 0): α(2x)=βx.\alpha (2 - x) = \beta x.

Rearrange: α(2x)=βx    2α=x(α+β).\alpha (2 - x) = \beta x \quad \implies \quad 2\alpha = x(\alpha + \beta).

Thus: x=2αα+β.x = \frac{2\alpha}{\alpha + \beta}.


Step 5: Solve for yy

Using x+2y=2x + 2y = 2: y=2x2=22αα+β2.y = \frac{2 - x}{2} = \frac{2 - \frac{2\alpha}{\alpha + \beta}}{2}.

Simplify: y=2(α+β)2α2(α+β)=2β2(α+β)=βα+β.y = \frac{2(\alpha + \beta) - 2\alpha}{2(\alpha + \beta)} = \frac{2\beta}{2(\alpha + \beta)} = \frac{\beta}{\alpha + \beta}.


Step 6: Substitute into Objective

The maximum occurs at: x=2αα+β,y=βα+β.x = \frac{2\alpha}{\alpha + \beta}, \quad y = \frac{\beta}{\alpha + \beta}.

Substitute these into z=xαyβz = x^\alpha y^\beta: z=(2αα+β)α(βα+β)β.z = \left(\frac{2\alpha}{\alpha + \beta}\right)^\alpha \left(\frac{\beta}{\alpha + \beta}\right)^\beta.

Simplify: z=(2α)α(β)β(α+β)α+β.z = \frac{(2\alpha)^\alpha (\beta)^\beta}{(\alpha + \beta)^{\alpha + \beta}}.


Final Answer

The maximum value of zz is: z=(2α)α(β)β(α+β)α+β,z = \frac{(2\alpha)^\alpha (\beta)^\beta}{(\alpha + \beta)^{\alpha + \beta}}, occurring at: x=2αα+β,y=βα+β.x = \frac{2\alpha}{\alpha + \beta}, \quad y = \frac{\beta}{\alpha + \beta}.


Do you have any specific parts you'd like explained further?

Related Questions

  1. What happens when α+β=1\alpha + \beta = 1?
  2. Can this optimization problem be solved using the Lagrange multiplier method?
  3. How does the solution change if α\alpha and β\beta are equal?
  4. What is the economic interpretation of the Cobb-Douglas function in this context?
  5. How does the result behave as β0\beta \to 0?

Tip

To better understand constrained optimization problems, practice solving them using both substitution and Lagrange multipliers to gain intuition for when each method is more appropriate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Constrained Optimization
Cobb-Douglas Function
Calculus

Formulas

Objective: z = x^α y^β
Constraint: x + 2y ≤ 2
First-Order Condition: ∂z/∂x = 0, ∂z/∂y = 0

Theorems

Logarithmic Transformation
Optimization with Constraints

Suitable Grade Level

College Level (Calculus and Optimization)