Math Problem Statement
已知x、y和z均为正整数,其中x≤300,y≤600,z≤400,且0.9x+0.8y+0.5z≤50,30x+15y+20z≤20000,求当x、y、z分别为何值时,3x+2y+4z将取得最大值?此最大值为多少?
Solution
这是一个线性规划问题。我们需要在约束条件下最大化目标函数 。以下是详细的解法步骤:
问题模型
目标函数:
约束条件:
1. \quad & 0.9x + 0.8y + 0.5z \leq 50, \\ 2. \quad & 30x + 15y + 20z \leq 20000, \\ 3. \quad & x \leq 300, \\ 4. \quad & y \leq 600, \\ 5. \quad & z \leq 400, \\ 6. \quad & x, y, z \text{ are positive integers.} \end{aligned}$$ ### 解法步骤 1. **离散化决策变量:** - $$x, y, z$$ 均为正整数且有上限,因此将其作为整数范围内的离散变量。 2. **计算可行域:** - 将约束条件逐步筛选,以满足所有约束。 3. **在可行域中寻找最优解:** - 对每组满足约束的整数解,计算 $$f(x, y, z) = 3x + 2y + 4z$$,找出最大值及其对应的 $$x, y, z$$ 值。 我将使用程序求解这个问题,确保结果准确。稍等片刻。from scipy.optimize import linprog import numpy as np # Coefficients for the objective function (negative because linprog minimizes) c = [-3, -2, -4] # Coefficients for inequality constraints A = [ [0.9, 0.8, 0.5], # 0.9x + 0.8y + 0.5z <= 50 [30, 15, 20] # 30x + 15y + 20z <= 20000 ] # RHS of inequality constraints b = [50, 20000] # Bounds for variables x, y, z x_bounds = (1, 300) # x is a positive integer within [1, 300] y_bounds = (1, 600) # y is a positive integer within [1, 600] z_bounds = (1, 400) # z is a positive integer within [1, 400] # Solve using linprog with bounds relaxation (continuous values) result = linprog(c, A_ub=A, b_ub=b, bounds=[x_bounds, y_bounds, z_bounds], method='highs') # Extract continuous result optimal_continuous = result.x if result.success else None # Round to integers and test feasibility if optimal_continuous is not None: # Generate integer solutions near the optimal continuous solution x_opt, y_opt, z_opt = map(round, optimal_continuous) feasible_solutions = [] for x in range(max(1, x_opt - 1), min(300, x_opt + 1) + 1): for y in range(max(1, y_opt - 1), min(600, y_opt + 1) + 1): for z in range(max(1, z_opt - 1), min(400, z_opt + 1) + 1): if (0.9 * x + 0.8 * y + 0.5 * z <= 50) and (30 * x + 15 * y + 20 * z <= 20000): feasible_solutions.append((x, y, z, 3 * x + 2 * y + 4 * z)) # Find the best feasible integer solution best_solution = max(feasible_solutions, key=lambda s: s[3]) if feasible_solutions else None else: best_solution = None best_solution(1, 1, 96, 389)(1, 1, 96, 389)success当 $$x = 1$$, $$y = 1$$, $$z = 96$$ 时,目标函数 $$3x + 2y + 4z$$ 取得最大值。 此最大值为: $$389$$ 如果有更多问题或需要进一步分析,请告诉我! ### 延伸问题: 1. 如果增加一个新的约束条件,例如 $$x + y + z \leq 500$$,结果会如何变化? 2. 如果目标函数改为 $$5x + 3y + 2z$$,最大值会是多少? 3. 是否存在其他满足条件的组合,其次优解的值是多少? 4. 如果约束中的系数发生变化(如 $$0.9x$$ 改为 $$1x$$),如何求解? 5. 通过图示说明可行域和目标函数的关系是否有帮助? **小贴士:** 线性规划问题中的整数优化可以通过搜索法、动态规划或分支定界等算法获得更高效的解法。Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Linear Programming
Optimization
Integer Constraints
Formulas
Objective function: f(x, y, z) = 3x + 2y + 4z
Constraints: 0.9x + 0.8y + 0.5z ≤ 50, 30x + 15y + 20z ≤ 20000
Bounds: x ≤ 300, y ≤ 600, z ≤ 400
Theorems
Feasibility and Boundedness in Linear Programming
Integer Programming Techniques
Suitable Grade Level
Undergraduate Level or Advanced High School (Grades 11-12)
Related Recommendation
Linear Programming with Integer Constraints: Optimal Solution for Maximize 3x + 5y
Maximizing 3x + 2y + 4z with Integer Linear Programming Constraints
Solve Linear Programming Problem with Constraints and Objective Function z = 10x + 10y
Linear Programming Problem: Maximize Z with Simplex Method
Linear Programming Maximization: z = 4x + 3y with constraints