Math Problem Statement

Find m∠XYW and m∠WYZ given m∠XYZ = 117° and expressions for m∠XYW = (6x + 44)° and m∠WYZ = (-10x + 65)°.

Solution

We are given the following information from the image:

  1. mXYZ=117m \angle XYZ = 117^\circ.
  2. XYW=(6x+44)\angle XYW = (6x + 44)^\circ.
  3. WYZ=(10x+65)\angle WYZ = (-10x + 65)^\circ.

We need to find:

  • mXYWm \angle XYW
  • mWYZm \angle WYZ.

Step 1: Use the fact that the angles form a straight line.

Since the angles XYW\angle XYW, WYZ\angle WYZ, and XYZ\angle XYZ are on a straight line, their sum should equal 180180^\circ: mXYW+mWYZ=180mXYZm \angle XYW + m \angle WYZ = 180^\circ - m \angle XYZ Substitute the given value mXYZ=117m \angle XYZ = 117^\circ: mXYW+mWYZ=180117=63m \angle XYW + m \angle WYZ = 180^\circ - 117^\circ = 63^\circ Now we know that: (6x+44)+(10x+65)=63(6x + 44)^\circ + (-10x + 65)^\circ = 63^\circ

Step 2: Simplify the equation.

Combine like terms: (6x10x)+(44+65)=63(6x - 10x) + (44 + 65) = 63 4x+109=63-4x + 109 = 63

Step 3: Solve for xx.

Subtract 109 from both sides: 4x=63109-4x = 63 - 109 4x=46-4x = -46 Divide by -4: x=464=11.5x = \frac{-46}{-4} = 11.5

Step 4: Find mXYWm \angle XYW and mWYZm \angle WYZ.

Now substitute x=11.5x = 11.5 into the expressions for XYW\angle XYW and WYZ\angle WYZ.

For mXYWm \angle XYW: mXYW=6x+44=6(11.5)+44=69+44=113m \angle XYW = 6x + 44 = 6(11.5) + 44 = 69 + 44 = 113^\circ

For mWYZm \angle WYZ: mWYZ=10x+65=10(11.5)+65=115+65=50m \angle WYZ = -10x + 65 = -10(11.5) + 65 = -115 + 65 = -50^\circ

Step 5: Verify the solution.

Check if the sum of mXYWm \angle XYW and mWYZm \angle WYZ equals 63°: 113+(50)=63113^\circ + (-50^\circ) = 63^\circ The solution checks out!

Final Answers:

  • mXYW=113m \angle XYW = 113^\circ
  • mWYZ=50m \angle WYZ = -50^\circ

Would you like any further explanation or details?

Here are 5 related questions:

  1. How do we know that the sum of the angles equals 180180^\circ?
  2. Can we solve the same problem using a different method?
  3. What happens if the angle mWYZm \angle WYZ turns out to be negative?
  4. How do we interpret the negative value of mWYZm \angle WYZ?
  5. What if the given angle mXYZm \angle XYZ was different? How would the equations change?

Tip: Always check the sum of angles to ensure your solution is correct when dealing with angles on a straight line.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Linear Equations
Geometry (Angles on a Line)

Formulas

Sum of angles on a straight line = 180°
Linear equation: ax + b = c

Theorems

Angles on a straight line sum to 180°

Suitable Grade Level

Grades 8-10