Math Problem Statement

1. Find the following limits: (a) lim_x→π sin(x − sin x). (b) lim_t→0 sin(π/2 cos(tan t)). (c) lim_y→1 sec(y sec²y − tan²y − 1). (d) lim_x→0 tan(π/4 cos(sin x^(1/3))). (e) lim_t→0 cos(π / (√19 − 3 sec 2t)). (f) lim_x→π/6 √(csc²x + 5√3 tan x). (g) lim_x→0⁺ sin(π/2 e^(√x)). (h) lim_x→1 cos⁻¹(ln √x).

Solution

Let's solve the given limits one by one:


(a) limxπsin(xsinx)\lim_{x \to \pi} \sin(x - \sin x)

  • At x=πx = \pi, sinx=0\sin x = 0, so xsinx=π0=πx - \sin x = \pi - 0 = \pi.
  • Therefore: limxπsin(xsinx)=sin(π)=0.\lim_{x \to \pi} \sin(x - \sin x) = \sin(\pi) = 0.

(b) limt0sin(π2cos(tant))\lim_{t \to 0} \sin\left(\frac{\pi}{2} \cos(\tan t)\right)

  • As t0t \to 0, tant0\tan t \to 0 and cos(tant)cos(0)=1\cos(\tan t) \to \cos(0) = 1.
  • Substituting, we get: sin(π2cos(tant))sin(π21)=sin(π2)=1.\sin\left(\frac{\pi}{2} \cos(\tan t)\right) \to \sin\left(\frac{\pi}{2} \cdot 1\right) = \sin\left(\frac{\pi}{2}\right) = 1.
  • Thus, the limit is: 1.\boxed{1}.

(c) limy1sec(ysec2ytan2y1)\lim_{y \to 1} \sec\left(y \sec^2 y - \tan^2 y - 1\right)

  • Substitute y=1y = 1: sec2(1)tan2(1)1=sec2(1)(sec2(1)1)1=1.\sec^2(1) - \tan^2(1) - 1 = \sec^2(1) - (\sec^2(1) - 1) - 1 = 1.
  • So: limy1sec(ysec2ytan2y1)=sec(1)=1.\lim_{y \to 1} \sec\left(y \sec^2 y - \tan^2 y - 1\right) = \sec(1) = 1.

(d) limx0tan(π4cos(sinx1/3))\lim_{x \to 0} \tan\left(\frac{\pi}{4} \cos(\sin x^{1/3})\right)

  • As x0x \to 0, x1/30x^{1/3} \to 0 and sinx1/30\sin x^{1/3} \to 0, so cos(sinx1/3)cos(0)=1\cos(\sin x^{1/3}) \to \cos(0) = 1.
  • Substituting: tan(π4cos(sinx1/3))tan(π41)=tan(π4)=1.\tan\left(\frac{\pi}{4} \cdot \cos(\sin x^{1/3})\right) \to \tan\left(\frac{\pi}{4} \cdot 1\right) = \tan\left(\frac{\pi}{4}\right) = 1.
  • Thus: 1.\boxed{1}.

(e) limt0cos(π193sec2t)\lim_{t \to 0} \cos\left(\frac{\pi}{\sqrt{19} - 3 \sec 2t}\right)

  • As t0t \to 0, sec(2t)sec(0)=1\sec(2t) \to \sec(0) = 1, so 193sec(2t)193\sqrt{19} - 3\sec(2t) \to \sqrt{19} - 3.
  • Substituting: cos(π193sec2t)cos(π193).\cos\left(\frac{\pi}{\sqrt{19} - 3 \sec 2t}\right) \to \cos\left(\frac{\pi}{\sqrt{19} - 3}\right).
  • The final value is: cos(π193).\cos\left(\frac{\pi}{\sqrt{19} - 3}\right).

(f) limxπ6csc2x+53tanx\lim_{x \to \frac{\pi}{6}} \sqrt{\csc^2 x + 5\sqrt{3} \tan x}

  • At x=π6x = \frac{\pi}{6}, cscx=2\csc x = 2 and tanx=13\tan x = \frac{1}{\sqrt{3}}.
  • Substituting: csc2x=4,and53tanx=5313=5.\csc^2 x = 4, \quad \text{and} \quad 5\sqrt{3} \tan x = 5\sqrt{3} \cdot \frac{1}{\sqrt{3}} = 5.
  • So: csc2x+53tanx=4+5=9=3.\sqrt{\csc^2 x + 5\sqrt{3} \tan x} = \sqrt{4 + 5} = \sqrt{9} = 3.

(g) limx0+sin(π2ex)\lim_{x \to 0^+} \sin\left(\frac{\pi}{2} e^{\sqrt{x}}\right)

  • As x0+x \to 0^+, x0\sqrt{x} \to 0, so exe0=1e^{\sqrt{x}} \to e^0 = 1.
  • Substituting: sin(π2ex)sin(π21)=sin(π2)=1.\sin\left(\frac{\pi}{2} e^{\sqrt{x}}\right) \to \sin\left(\frac{\pi}{2} \cdot 1\right) = \sin\left(\frac{\pi}{2}\right) = 1.

(h) limx1cos1(lnx)\lim_{x \to 1} \cos^{-1}(\ln \sqrt{x})

  • At x=1x = 1, x=1\sqrt{x} = 1 and ln(1)=0\ln(1) = 0.
  • So: cos1(lnx)cos1(0)=π2.\cos^{-1}(\ln \sqrt{x}) \to \cos^{-1}(0) = \frac{\pi}{2}.

Let me know which part you'd like more details about!


Related Questions:

  1. What are the properties of the sec\sec function in trigonometric limits?
  2. How does the small-angle approximation help in solving trigonometric limits?
  3. Why does the limit involving cos1\cos^{-1} converge to π2\frac{\pi}{2} in part (h)?
  4. How does exe^{\sqrt{x}} simplify when x0+x \to 0^+?
  5. What are some key techniques for solving limits involving trigonometric functions?

Tip: When solving limits, always check if substituting directly works first before applying expansions or approximations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Trigonometric functions
Inverse trigonometric functions
Exponential functions

Formulas

lim_x→a f(x) = L
sin(x), cos(x), tan(x), sec(x)
Inverse functions: cos⁻¹(x)
Exponential growth: e^(x)

Theorems

Squeeze theorem for limits
Continuity properties of trigonometric functions
Limits of composite functions

Suitable Grade Level

Undergraduate calculus or advanced high school calculus