Math Problem Statement
1. Find the following limits:
(a) lim_x→π sin(x − sin x).
(b) lim_t→0 sin(π/2 cos(tan t)).
(c) lim_y→1 sec(y sec²y − tan²y − 1).
(d) lim_x→0 tan(π/4 cos(sin x^(1/3))).
(e) lim_t→0 cos(π / (√19 − 3 sec 2t)).
(f) lim_x→π/6 √(csc²x + 5√3 tan x).
(g) lim_x→0⁺ sin(π/2 e^(√x)).
(h) lim_x→1 cos⁻¹(ln √x).
Solution
Let's solve the given limits one by one:
(a) limx→πsin(x−sinx)
- At x=π, sinx=0, so x−sinx=π−0=π.
- Therefore:
limx→πsin(x−sinx)=sin(π)=0.
(b) limt→0sin(2πcos(tant))
- As t→0, tant→0 and cos(tant)→cos(0)=1.
- Substituting, we get:
sin(2πcos(tant))→sin(2π⋅1)=sin(2π)=1.
- Thus, the limit is:
1.
(c) limy→1sec(ysec2y−tan2y−1)
- Substitute y=1:
sec2(1)−tan2(1)−1=sec2(1)−(sec2(1)−1)−1=1.
- So:
limy→1sec(ysec2y−tan2y−1)=sec(1)=1.
(d) limx→0tan(4πcos(sinx1/3))
- As x→0, x1/3→0 and sinx1/3→0, so cos(sinx1/3)→cos(0)=1.
- Substituting:
tan(4π⋅cos(sinx1/3))→tan(4π⋅1)=tan(4π)=1.
- Thus:
1.
(e) limt→0cos(19−3sec2tπ)
- As t→0, sec(2t)→sec(0)=1, so 19−3sec(2t)→19−3.
- Substituting:
cos(19−3sec2tπ)→cos(19−3π).
- The final value is:
cos(19−3π).
(f) limx→6πcsc2x+53tanx
- At x=6π, cscx=2 and tanx=31.
- Substituting:
csc2x=4,and53tanx=53⋅31=5.
- So:
csc2x+53tanx=4+5=9=3.
(g) limx→0+sin(2πex)
- As x→0+, x→0, so ex→e0=1.
- Substituting:
sin(2πex)→sin(2π⋅1)=sin(2π)=1.
(h) limx→1cos−1(lnx)
- At x=1, x=1 and ln(1)=0.
- So:
cos−1(lnx)→cos−1(0)=2π.
Let me know which part you'd like more details about!
Related Questions:
- What are the properties of the sec function in trigonometric limits?
- How does the small-angle approximation help in solving trigonometric limits?
- Why does the limit involving cos−1 converge to 2π in part (h)?
- How does ex simplify when x→0+?
- What are some key techniques for solving limits involving trigonometric functions?
Tip: When solving limits, always check if substituting directly works first before applying expansions or approximations.