Math Problem Statement

Evaluate the following limits: 1. \( \lim_{{x \to 0}} \frac{{x - 1}}{{\ln x}} \) 2. \( \lim_{{x \to 1}} \frac{{\sin(\pi x)}}{{x - 1}} \)

Solution

Let's solve each limit in order.


Problem 120:

limx0x1lnx\lim_{{x \to 0}} \frac{{x - 1}}{{\ln x}}

Solution:

As x0x \to 0, lnx\ln x \to -\infty and x11x - 1 \to -1, resulting in an indeterminate form of 1=0\frac{-1}{-\infty} = 0.

Thus, limx0x1lnx=0\lim_{{x \to 0}} \frac{{x - 1}}{{\ln x}} = 0


Problem 121:

limx1sin(πx)x1\lim_{{x \to 1}} \frac{{\sin (\pi x)}}{{x - 1}}

Solution:

We can rewrite sin(πx)\sin (\pi x) as sin(π(x1+1))=sin(π(x1)+π)\sin (\pi (x - 1 + 1)) = \sin (\pi (x - 1) + \pi).

Using the small-angle approximation, (\sin (\pi (x - 1) + \pi) ≈

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Limits
Logarithmic Functions
Trigonometric Limits

Formulas

L'Hôpital's Rule

Theorems

L'Hôpital's Rule for indeterminate forms

Suitable Grade Level

Grade 12 / College-level Calculus