Math Problem Statement

Explain this step by step

Explain the step-by-step solution using Simpson's Rule to approximate the integral of √(x^3 - 1) from 1 to 2, with n = 10 subdivisions.

Solution

Here’s a step-by-step explanation of the Simpson's Rule in the image:

Step 1: Problem Setup

  • You are asked to approximate the integral 12x31dx\int_1^2 \sqrt{x^3 - 1} \, dx using Simpson’s Rule with n=10n = 10 subdivisions.

Step 2: Formula for Simpson's Rule

  • The Simpson's Rule formula is: abf(x)dxh3[f(x0)+4f(x1)+2f(x2)+4f(x3)++4f(xn1)+f(xn)]\int_a^b f(x) dx \approx \frac{h}{3} \left[ f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n) \right] where:
    • h=ban=2110=0.1h = \frac{b - a}{n} = \frac{2 - 1}{10} = 0.1.
    • x0=a=1x_0 = a = 1, xn=b=2x_n = b = 2, and x1,x2,,xn1x_1, x_2, \dots, x_{n-1} are intermediate points.

Step 3: Calculating Function Values

  • The function being integrated is f(x)=x31f(x) = \sqrt{x^3 - 1}.
  • The function is evaluated at 11 points: x0=1,x1=1.1,,x10=2x_0 = 1, x_1 = 1.1, \dots, x_{10} = 2.
  • Function values: f(1)=0,f(1.1)=0.575326,f(1.2)=0.853229,,f(2)=2.64575f(1) = 0, \quad f(1.1) = 0.575326, \quad f(1.2) = 0.853229, \dots, f(2) = 2.64575

Step 4: Applying Simpson's Rule

  • Using the function values, apply Simpson’s Rule: 12x31dx0.13[f(1)+4f(1.1)+2f(1.2)+4f(1.3)+2f(1.4)++4f(1.9)+f(2)]\int_1^2 \sqrt{x^3 - 1} \, dx \approx \frac{0.1}{3} \left[ f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + 2f(1.4) + \dots + 4f(1.9) + f(2) \right] Substituting the function values: [ \frac{0.1}{3} \left[ 0 + 4(0.575326) + 2(0.853229) + 4(1.09407) + \dots + 4(2.42054) + 2.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Integration
Simpson's Rule
Approximation Methods
Calculus

Formulas

Simpson's Rule formula: ∫a^b f(x) dx ≈ (h / 3) [f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ... + 4f(xn-1) + f(xn)]
h = (b - a) / n
f(x) = √(x^3 - 1)

Theorems

Simpson's Rule (Numerical Integration)

Suitable Grade Level

Undergraduate or Advanced High School (Grades 11-12)