Math Problem Statement

Use the Product-to-Sum formula to simplify the following:

  1. \sin\left(4x\right)\cos\left(x\right)

  2. \cos\left(5x\right)\cos\left(2x\right)

Solution

1. Simplifying sin(4x)cos(x)\sin(4x) \cos(x)

To simplify this expression using the Product-to-Sum formula, we use the following identity:

sin(A)cos(B)=12[sin(A+B)+sin(AB)]\sin(A) \cos(B) = \frac{1}{2} \left[ \sin(A + B) + \sin(A - B) \right]

For A=4xA = 4x and B=xB = x, the expression becomes:

sin(4x)cos(x)=12[sin(4x+x)+sin(4xx)]\sin(4x) \cos(x) = \frac{1}{2} \left[ \sin(4x + x) + \sin(4x - x) \right]

Simplifying the terms inside the sine functions:

=12[sin(5x)+sin(3x)]= \frac{1}{2} \left[ \sin(5x) + \sin(3x) \right]

Thus, the simplified form is:

sin(4x)cos(x)=12[sin(5x)+sin(3x)]\sin(4x) \cos(x) = \frac{1}{2} \left[ \sin(5x) + \sin(3x) \right]


2. Simplifying cos(5x)cos(2x)\cos(5x) \cos(2x)

For this expression, we use the Product-to-Sum formula for cosines:

cos(A)cos(B)=12[cos(A+B)+cos(AB)]\cos(A) \cos(B) = \frac{1}{2} \left[ \cos(A + B) + \cos(A - B) \right]

Here, A=5xA = 5x and B=2xB = 2x. Applying the formula:

cos(5x)cos(2x)=12[cos(5x+2x)+cos(5x2x)]\cos(5x) \cos(2x) = \frac{1}{2} \left[ \cos(5x + 2x) + \cos(5x - 2x) \right]

Simplifying the terms inside the cosine functions:

=12[cos(7x)+cos(3x)]= \frac{1}{2} \left[ \cos(7x) + \cos(3x) \right]

Thus, the simplified form is:

cos(5x)cos(2x)=12[cos(7x)+cos(3x)]\cos(5x) \cos(2x) = \frac{1}{2} \left[ \cos(7x) + \cos(3x) \right]


Would you like further details or explanations on these steps?

Related questions:

  1. How do the Product-to-Sum formulas apply to other trigonometric functions, like sin(x)sin(y)\sin(x)\sin(y) or cos(x)sin(y)\cos(x)\sin(y)?
  2. Can the Product-to-Sum formulas be used to simplify integrals involving trigonometric functions?
  3. How would you use the Sum-to-Product formulas to simplify expressions?
  4. What is the geometric interpretation of the Product-to-Sum identities?
  5. How can you derive the Product-to-Sum formulas from the angle addition formulas?

Tip: Remember that the Product-to-Sum formulas are especially useful for transforming products of trigonometric functions into sums, which can simplify integration and other mathematical operations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Product-to-Sum Formula
Trigonometric Identities

Formulas

\sin(A) \cos(B) = \frac{1}{2} \left[ \sin(A + B) + \sin(A - B) \right]
\cos(A) \cos(B) = \frac{1}{2} \left[ \cos(A + B) + \cos(A - B) \right]

Theorems

Product-to-Sum Identities

Suitable Grade Level

Grades 10-12