Math Problem Statement

(sin φ + cos φ)^2

Solution

The expression in the image is:

(sinϕ+cosϕ)2(\sin \phi + \cos \phi)^2

Let’s expand and simplify it.

Step 1: Use the identity for a binomial square

(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 Here, a=sinϕa = \sin \phi and b=cosϕb = \cos \phi.

Step 2: Apply the identity to the expression

(sinϕ+cosϕ)2=sin2ϕ+2sinϕcosϕ+cos2ϕ(\sin \phi + \cos \phi)^2 = \sin^2 \phi + 2\sin \phi \cos \phi + \cos^2 \phi

Step 3: Use the Pythagorean identity

We know that: sin2ϕ+cos2ϕ=1\sin^2 \phi + \cos^2 \phi = 1

Thus: sin2ϕ+2sinϕcosϕ+cos2ϕ=1+2sinϕcosϕ\sin^2 \phi + 2\sin \phi \cos \phi + \cos^2 \phi = 1 + 2\sin \phi \cos \phi

Final Simplified Expression

(sinϕ+cosϕ)2=1+2sinϕcosϕ(\sin \phi + \cos \phi)^2 = 1 + 2\sin \phi \cos \phi

This is the simplified form.


Do you have any questions or need further details?

Related Questions:

  1. How can the identity sin2ϕ+cos2ϕ=1\sin^2 \phi + \cos^2 \phi = 1 be derived?
  2. What are other useful trigonometric identities?
  3. Can the expression 1+2sinϕcosϕ1 + 2\sin \phi \cos \phi be further factored?
  4. What happens if ϕ\phi takes specific values, such as 00^\circ or 4545^\circ?
  5. How can we rewrite 2sinϕcosϕ2\sin \phi \cos \phi in terms of a double angle?

Tip: The expression 2sinϕcosϕ2\sin \phi \cos \phi can also be rewritten using the double angle identity: 2sinϕcosϕ=sin(2ϕ)2\sin \phi \cos \phi = \sin(2\phi).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Algebraic Expansion
Pythagorean Identity

Formulas

(a + b)^2 = a^2 + 2ab + b^2
sin^2 φ + cos^2 φ = 1
2sin φ cos φ = sin(2φ)

Theorems

Pythagorean Identity
Double Angle Identity

Suitable Grade Level

Grades 9-11