Math Problem Statement

Solve

Solve the algebraic and square root expressions shown in the image for question 24.

Solution

Let's solve the problems from the image step by step. I'll begin with question 24, and proceed from there.


Question 24: Simplify the given expressions

The task here is to simplify each expression.

a) (1+23)(123)(1 + 2\sqrt{3})(1 - 2\sqrt{3})

This is a product of binomials of the form (a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2.

  • Here a=1a = 1 and b=23b = 2\sqrt{3}, so we apply the formula: =12(23)2=14×3=112=11= 1^2 - (2\sqrt{3})^2 = 1 - 4 \times 3 = 1 - 12 = -11 So the result is -11.

b) (232)(32+23)(2\sqrt{3} - \sqrt{2})(3\sqrt{2} + 2\sqrt{3})

This is a product of binomials, so we apply the distributive property: (23)(32)+(23)(23)+(2)(32)+(2)(23)(2\sqrt{3})(3\sqrt{2}) + (2\sqrt{3})(2\sqrt{3}) + (-\sqrt{2})(3\sqrt{2}) + (-\sqrt{2})(2\sqrt{3})

Simplifying each term: =66+4×3+(4)+(26)= 6\sqrt{6} + 4 \times 3 + (-\sqrt{4}) + (-2\sqrt{6}) =66+12226= 6\sqrt{6} + 12 - 2 - 2\sqrt{6} =(6626)+(122)=46+10= (6\sqrt{6} - 2\sqrt{6}) + (12 - 2) = 4\sqrt{6} + 10

So the result is 46+104\sqrt{6} + 10.


c) (33)(23)(3 - \sqrt{3})(2 - \sqrt{3})

Using distributive property: =(3)(2)+(3)(3)+(3)(2)+(3)(3)= (3)(2) + (3)(-\sqrt{3}) + (-\sqrt{3})(2) + (-\sqrt{3})(-\sqrt{3}) =63323+3= 6 - 3\sqrt{3} - 2\sqrt{3} + 3 =953= 9 - 5\sqrt{3}

So the result is 9539 - 5\sqrt{3}.


d) (52125)(1252)250\left( 5\sqrt{2} - \sqrt{125} \right) \left( \sqrt{125} - \sqrt{2} \right) - \sqrt{250}

Let's first simplify 125\sqrt{125} and 250\sqrt{250}:

  • 125=55\sqrt{125} = 5\sqrt{5}
  • 250=510\sqrt{250} = 5\sqrt{10}

Now simplify the expression (5255)(552)(5\sqrt{2} - 5\sqrt{5})(5\sqrt{5} - \sqrt{2}): =(52)(55)+(52)(2)+(55)(55)+(55)(2)= (5\sqrt{2})(5\sqrt{5}) + (5\sqrt{2})(-\sqrt{2}) + (-5\sqrt{5})(5\sqrt{5}) + (-5\sqrt{5})(-\sqrt{2}) =25101025×5+510= 25\sqrt{10} - 10 - 25 \times 5 + 5\sqrt{10} =251010125+510= 25\sqrt{10} - 10 - 125 + 5\sqrt{10} =3010135= 30\sqrt{10} - 135

Finally, subtract 250=510\sqrt{250} = 5\sqrt{10}: 3010135510=251013530\sqrt{10} - 135 - 5\sqrt{10} = 25\sqrt{10} - 135

So the result is 251013525\sqrt{10} - 135.


Question 25: Simplify the given expressions

We continue simplifying the expressions.

a) (35+1351)\left( \frac{3\sqrt{5} + 1}{3\sqrt{5} - 1} \right)

This expression is in a simplified form. It represents a ratio and doesn't need further simplification unless rationalization is required, but here it seems to be left as is.


Would you like me to proceed with the remaining questions?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Square Roots
Binomial Expansion
Distributive Property

Formulas

Product of binomials (a + b)(a - b) = a^2 - b^2
Distributive property: a(b + c) = ab + ac

Theorems

-

Suitable Grade Level

Grades 9-10