Math Problem Statement

Tentukan hasil dari operasi bentuk-bentuk akar berikut: a. (2√3 + √2)(2√3 - √2), b. √3 (5√6 + 4√5), Rasionalkan pembagian bentuk akar berikut: a. 2√10 / (√7 - √5), b. √5 / √8

Solution

Let's break down the questions and solve them one by one:


1. Solve the square root expressions:

a. (23+2)(232)(2 \sqrt{3} + \sqrt{2})(2 \sqrt{3} - \sqrt{2})

This is a difference of squares:

(a+b)(ab)=a2b2(a + b)(a - b) = a^2 - b^2

Here:

  • a=23a = 2 \sqrt{3}
  • b=2b = \sqrt{2}

(23)2(2)2=4×32=122=10(2 \sqrt{3})^2 - (\sqrt{2})^2 = 4 \times 3 - 2 = 12 - 2 = 10

Answer: 10


b. 3(56+45)\sqrt{3}(5 \sqrt{6} + 4 \sqrt{5})

Distribute 3\sqrt{3}:

3×56+3×45\sqrt{3} \times 5 \sqrt{6} + \sqrt{3} \times 4 \sqrt{5}

First term: 3×6=18=32,5×32=152\sqrt{3} \times \sqrt{6} = \sqrt{18} = 3 \sqrt{2}, \quad 5 \times 3 \sqrt{2} = 15 \sqrt{2}

Second term: 3×5=15,4×15=415\sqrt{3} \times \sqrt{5} = \sqrt{15}, \quad 4 \times \sqrt{15} = 4 \sqrt{15}

So, the result is:

152+41515 \sqrt{2} + 4 \sqrt{15}

Answer: 152+41515 \sqrt{2} + 4 \sqrt{15}


2. Rationalize the following:

a. 21075\frac{2 \sqrt{10}}{\sqrt{7} - \sqrt{5}}

To rationalize this expression, multiply both the numerator and the denominator by the conjugate of the denominator 7+5\sqrt{7} + \sqrt{5}:

21075×7+57+5\frac{2 \sqrt{10}}{\sqrt{7} - \sqrt{5}} \times \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} + \sqrt{5}}

This gives:

210(7+5)(7)2(5)2\frac{2 \sqrt{10}(\sqrt{7} + \sqrt{5})}{(\sqrt{7})^2 - (\sqrt{5})^2}

First, calculate the denominator:

(7)2(5)2=75=2(\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2

Now, the numerator:

210×7=270,210×5=250=1022 \sqrt{10} \times \sqrt{7} = 2 \sqrt{70}, \quad 2 \sqrt{10} \times \sqrt{5} = 2 \sqrt{50} = 10 \sqrt{2}

So the full expression becomes:

270+1022\frac{2 \sqrt{70} + 10 \sqrt{2}}{2}

This simplifies to:

70+52\sqrt{70} + 5 \sqrt{2}

Answer: 70+52\sqrt{70} + 5 \sqrt{2}


b. 58\frac{\sqrt{5}}{\sqrt{8}}

Simplify the square roots:

58=522\frac{\sqrt{5}}{\sqrt{8}} = \frac{\sqrt{5}}{2 \sqrt{2}}

To rationalize, multiply both the numerator and the denominator by 2\sqrt{2}:

522×22=102×2=104\frac{\sqrt{5}}{2 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{10}}{2 \times 2} = \frac{\sqrt{10}}{4}

Answer: 104\frac{\sqrt{10}}{4}


Would you like further clarifications or details on any of these steps?


Here are 5 related questions you can try:

  1. Simplify (7+2)(72)(\sqrt{7} + 2)(\sqrt{7} - 2).
  2. Rationalize 15+2\frac{1}{\sqrt{5} + 2}.
  3. Multiply 32×433 \sqrt{2} \times 4 \sqrt{3}.
  4. Find the simplified form of 123\frac{\sqrt{12}}{\sqrt{3}}.
  5. Simplify 46264 \sqrt{6} - 2 \sqrt{6}.

Tip: When rationalizing denominators, always look for the conjugate to simplify the expression efficiently!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Radical Expressions
Rationalization

Formulas

Difference of squares: (a + b)(a - b) = a^2 - b^2
Distributive property: a(b + c) = ab + ac
Rationalizing denominators with conjugates

Theorems

Conjugate Method for Rationalization

Suitable Grade Level

Grades 9-11