Math Problem Statement

Add/Subtract Rationals: Simplify each expression.1) 2m25m - m - 2n25m 2) 3x - 3 y24x + x + 3 y24x3) 6x - 3 y4x2y + x + y4x2y 4) m + n30m4 - m + 2n30m45) x + 2 y15x - x - 6 y15x 6) 26 + 34b7) 4y4 - 3x4y3 8) 5x4 - 65xy9) 6a2 + 2b3ab 10) 42 y2 + 26 y11) m - 24m3 + 20m2 - m + 64m3 + 20m2 12) k - 418k - 36 - k - 518k - 36

Solution

Let's simplify each given rational expression step-by-step.


1) 2m25mm2n25m\frac{2m^2}{5m} - m - \frac{2n^2}{5m}

  1. Rewrite each term with a common denominator of 5m5m: 2m25m5m25m2n25m\frac{2m^2}{5m} - \frac{5m^2}{5m} - \frac{2n^2}{5m}
  2. Combine numerators: 2m25m22n25m=3m22n25m\frac{2m^2 - 5m^2 - 2n^2}{5m} = \frac{-3m^2 - 2n^2}{5m}

2) 3x3y24x+x+3y24x\frac{3x - 3y^2}{4x} + \frac{x + 3y^2}{4x}

  1. Combine fractions (denominator 4x4x): (3x3y2)+(x+3y2)4x\frac{(3x - 3y^2) + (x + 3y^2)}{4x}
  2. Simplify numerator: 3x+x3y2+3y24x=4x4x=1\frac{3x + x - 3y^2 + 3y^2}{4x} = \frac{4x}{4x} = 1

3) 6x3y4x2y+x+y4x2y\frac{6x - 3y}{4x^2y} + \frac{x + y}{4x^2y}

  1. Combine fractions (denominator 4x2y4x^2y): (6x3y)+(x+y)4x2y\frac{(6x - 3y) + (x + y)}{4x^2y}
  2. Simplify numerator: 6x+x3y+y4x2y=7x2y4x2y\frac{6x + x - 3y + y}{4x^2y} = \frac{7x - 2y}{4x^2y}

4) m+n30m4m+2n30m4\frac{m + n}{30m^4} - \frac{m + 2n}{30m^4}

  1. Combine fractions (denominator 30m430m^4): (m+n)(m+2n)30m4\frac{(m + n) - (m + 2n)}{30m^4}
  2. Simplify numerator: m+nm2n30m4=n30m4\frac{m + n - m - 2n}{30m^4} = \frac{-n}{30m^4}

5) x+2y15xx6y15x\frac{x + 2y}{15x} - \frac{x - 6y}{15x}

  1. Combine fractions (denominator 15x15x): (x+2y)(x6y)15x\frac{(x + 2y) - (x - 6y)}{15x}
  2. Simplify numerator: x+2yx+6y15x=8y15x\frac{x + 2y - x + 6y}{15x} = \frac{8y}{15x}

6) 2÷6+3÷4b2 \div 6 + 3 \div 4b

  1. Rewrite each term as a fraction: 26+34b=13+34b\frac{2}{6} + \frac{3}{4b} = \frac{1}{3} + \frac{3}{4b}
  2. The least common denominator is 12b12b: 4b12b+912b=4b+912b\frac{4b}{12b} + \frac{9}{12b} = \frac{4b + 9}{12b}

7) 4y43x4y3\frac{4y}{4} - \frac{3x}{4y^3}

  1. Simplify the first fraction: y3x4y3y - \frac{3x}{4y^3}
  2. Combine under a common denominator: 4y44y33x4y3=4y43x4y3\frac{4y^4}{4y^3} - \frac{3x}{4y^3} = \frac{4y^4 - 3x}{4y^3}

8) 5x4665xy\frac{5x^4}{6} - \frac{6}{5xy}

  1. Combine under a common denominator of 30xy30xy: 25x5y30xy3630xy\frac{25x^5y}{30xy} - \frac{36}{30xy}
  2. Simplify: 25x5y3630xy\frac{25x^5y - 36}{30xy}

9) 6a23ab+2b3ab\frac{6a^2}{3ab} + \frac{2b}{3ab}

  1. Combine fractions (denominator 3ab3ab): 6a2+2b3ab\frac{6a^2 + 2b}{3ab}

10) 42y21+26y1\frac{42y^2}{1} + \frac{26y}{1}

  1. Factor common terms: 42y2+26y=2y(21y+13)42y^2 + 26y = 2y(21y + 13)

11) m24m3+20m2m+64m3+20m2\frac{m - 2}{4m^3 + 20m^2} - \frac{m + 6}{4m^3 + 20m^2}

  1. Combine fractions: (m2)(m+6)4m3+20m2\frac{(m - 2) - (m + 6)}{4m^3 + 20m^2}
  2. Simplify numerator: m2m64m3+20m2=84m3+20m2\frac{m - 2 - m - 6}{4m^3 + 20m^2} = \frac{-8}{4m^3 + 20m^2}

**12) (\frac{k -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Rational Expressions
Fraction Operations
Common Denominators
Simplification of Algebraic Expressions

Formulas

Addition/Subtraction of Fractions: a/b + c/b = (a+c)/b
Common Denominator Approach: a/b + c/d = (ad + bc)/(bd)

Theorems

Properties of Rational Expressions
Distributive Property

Suitable Grade Level

Grades 9-12