Math Problem Statement

Solve the following mathematical problems: a. \( \sqrt{2} \cdot \sqrt{3} \) b. \( \sqrt{5} \cdot \sqrt{5} \) c. \( \sqrt{6} \cdot \sqrt{5} \) d. \( 2 \sqrt{2} \cdot 4 \sqrt{3} \) e. \( 5^3 \cdot \sqrt{6} \cdot 6^3 \cdot \sqrt{5} \) f. \( \frac{\sqrt[3]{10}}{\sqrt[3]{5}} \) g. \( \frac{\sqrt{24}}{\sqrt{6}} \) h. \( \frac{10 \sqrt{6}}{5 \sqrt{2}} \)

Solution

Let's go through each of the problems step by step.

a. 23\sqrt{2} \cdot \sqrt{3}

Using the property of square roots: ab=ab\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} 23=23=6\sqrt{2} \cdot \sqrt{3} = \sqrt{2 \cdot 3} = \sqrt{6}

b. 55\sqrt{5} \cdot \sqrt{5}

This is simplified using: aa=a\sqrt{a} \cdot \sqrt{a} = a 55=5\sqrt{5} \cdot \sqrt{5} = 5

c. 65\sqrt{6} \cdot \sqrt{5}

Applying the same square root multiplication rule: 65=65=30\sqrt{6} \cdot \sqrt{5} = \sqrt{6 \cdot 5} = \sqrt{30}

d. 22432 \sqrt{2} \cdot 4 \sqrt{3}

First, multiply the numerical coefficients 24=82 \cdot 4 = 8, then the square roots: 23=23=6\sqrt{2} \cdot \sqrt{3} = \sqrt{2 \cdot 3} = \sqrt{6} So, the full expression becomes: 2243=862 \sqrt{2} \cdot 4 \sqrt{3} = 8 \sqrt{6}

e. 5366355^3 \cdot \sqrt{6} \cdot 6^3 \cdot \sqrt{5}

First, simplify the powers and products: 53=125,63=2165^3 = 125, \quad 6^3 = 216 Now multiply the square roots: 65=65=30\sqrt{6} \cdot \sqrt{5} = \sqrt{6 \cdot 5} = \sqrt{30} So, the full expression becomes: 12521630125 \cdot 216 \cdot \sqrt{30} We can calculate: 125216=27000125 \cdot 216 = 27000 Thus, the result is: 270003027000 \sqrt{30}

f. 10353\frac{\sqrt[3]{10}}{\sqrt[3]{5}}

This can be simplified as: [ \frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}} ] [ \frac{\sqrt[3]{10}}{\sqrt[3]{5}} = \sqrt[3]{\frac{10}{5}} = \sqrt[3]{2} ]

g. 246\frac{\sqrt{24}}{\sqrt{6}}

Using the property of square roots: ab=ab\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} 246=246=4=2\frac{\sqrt{24}}{\sqrt{6}} = \sqrt{\frac{24}{6}} = \sqrt{4} = 2

h. 10652\frac{10 \sqrt{6}}{5 \sqrt{2}}

First, simplify the numerical coefficients: 105=2\frac{10}{5} = 2 Now, simplify the square roots: 62=62=3\frac{\sqrt{6}}{\sqrt{2}} = \sqrt{\frac{6}{2}} = \sqrt{3} So, the full expression becomes: 23=232 \cdot \sqrt{3} = 2\sqrt{3}


Let me know if you need any additional details!

Here are 5 related questions:

  1. How do you simplify expressions involving cube roots like in problem (f)?
  2. Can you apply the same square root rules for fractional powers, such as x2\sqrt{x^2}?
  3. What is the general rule for multiplying or dividing radical expressions?
  4. How do you deal with exponents in radical expressions, such as 535^3?
  5. What are some strategies for simplifying nested radicals like ab\sqrt{a} \cdot \sqrt{b}?

Tip: Always look for opportunities to simplify both numerical coefficients and radicals separately to make problems easier to solve!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Radicals
Cube Roots
Multiplication of Radicals
Division of Radicals

Formulas

\( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \)
\( \sqrt{a} \cdot \sqrt{a} = a \)
\( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \)
\( \frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}} \)

Theorems

Properties of Square Roots
Properties of Cube Roots
Simplification of Radical Expressions

Suitable Grade Level

Grades 9-12