Math Problem Statement

Radicals Simplify the expression. Assume that the letters denote any positive real numbers. 45. (a) "4 x4 (b) "4 16x8 46. (a) "5 x10 (b) "3 x3 y6 47. (a) "6 64a6 b7 (b) "3 a2 b"3 64a4 b 48. (a) "4 x4 y2 z2 (b) #3 "64x6

Solution

Let's simplify each given radical expression step by step.

45.

(a) x44\sqrt[4]{x^4}
Using the property of radicals ann=a\sqrt[n]{a^n} = a:
x44=x\sqrt[4]{x^4} = x

(b) 16x84\sqrt[4]{16x^8}
Break it into separate radicals:
[ \sqrt[4]{16x^8} = \sqrt[4]{16} \cdot \sqrt[4]{x^8} ]
164=2\sqrt[4]{16} = 2 because 24=162^4 = 16, and x84=x2\sqrt[4]{x^8} = x^2 (divide the exponent by 4).
16x84=2x2\sqrt[4]{16x^8} = 2x^2


46.

(a) x105\sqrt[5]{x^{10}}
Using the property xmn=xm/n\sqrt[n]{x^m} = x^{m/n}:
x105=x10/5=x2\sqrt[5]{x^{10}} = x^{10/5} = x^2

(b) x3y63\sqrt[3]{x^3y^6}
Separate terms:
[ \sqrt[3]{x^3y^6} = \sqrt[3]{x^3} \cdot \sqrt[3]{y^6} ]
x33=x\sqrt[3]{x^3} = x and y63=y2\sqrt[3]{y^6} = y^2:
x3y63=xy2\sqrt[3]{x^3y^6} = xy^2


47.

(a) 64a6b76\sqrt[6]{64a^6b^7}
Break into separate radicals:
[ \sqrt[6]{64a^6b^7} = \sqrt[6]{64} \cdot \sqrt[6]{a^6} \cdot \sqrt[6]{b^7} ]
646=2\sqrt[6]{64} = 2 because 26=642^6 = 64, a66=a\sqrt[6]{a^6} = a, and b76=b7/6\sqrt[6]{b^7} = b^{7/6}:
64a6b76=2ab7/6\sqrt[6]{64a^6b^7} = 2ab^{7/6}

(b) a2b364a4b3\sqrt[3]{a^2b} \cdot \sqrt[3]{64a^4b}
Combine under one cube root:
[ \sqrt[3]{a^2b \cdot 64a^4b} = \sqrt[3]{64a^{2+4}b^{1+1}} = \sqrt[3]{64a^6b^2} ]
Separate and simplify:
[ \sqrt[3]{64a^6b^2} = \sqrt[3]{64} \cdot \sqrt[3]{a^6} \cdot \sqrt[3]{b^2} ]
643=4\sqrt[3]{64} = 4, a63=a2\sqrt[3]{a^6} = a^2, and b23=b2/3\sqrt[3]{b^2} = b^{2/3}:
64a6b23=4a2b2/3\sqrt[3]{64a^6b^2} = 4a^2b^{2/3}


48.

(a) x4y2z24\sqrt[4]{x^4y^2z^2}
Separate terms:
[ \sqrt[4]{x^4y^2z^2} = \sqrt[4]{x^4} \cdot \sqrt[4]{y^2} \cdot \sqrt[4]{z^2} ]
x44=x\sqrt[4]{x^4} = x, y24=y2/4=y1/2\sqrt[4]{y^2} = y^{2/4} = y^{1/2}, and z24=z2/4=z1/2\sqrt[4]{z^2} = z^{2/4} = z^{1/2}:
x4y2z24=xy1/2z1/2\sqrt[4]{x^4y^2z^2} = xy^{1/2}z^{1/2}

(b) 64x633\sqrt[3]{\sqrt[3]{64x^6}}
Simplify the inner cube root first:
[ \sqrt[3]{64x^6} = \sqrt[3]{64} \cdot \sqrt[3]{x^6} = 4x^2 ]
Now take the cube root again:
[ \sqrt[3]{4x^2} = \sqrt[3]{4} \cdot \sqrt[3]{x^2} ]
Final result:
[ \sqrt[3]{\sqrt[3]{64x^6}} = \sqrt[3]{4}x^{2/3} ]


Questions to Explore Further:

  1. What are the key properties of radicals that simplify fractional exponents?
  2. How do higher roots (e.g., 4th or 6th roots) differ from square roots in simplification?
  3. What happens when radical expressions include negative exponents?
  4. How do you simplify radicals with coefficients outside the radical?
  5. How can radical expressions be rationalized when involving denominators?

Tip: Always rewrite radicals involving even roots as fractional exponents when stuck—it simplifies the process.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Radicals
Simplification of expressions
Properties of exponents

Formulas

n-th root property: \(\sqrt[n]{a^m} = a^{m/n}\)
Product property of radicals: \(\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}\)

Theorems

Properties of exponents
Simplification rules for radicals

Suitable Grade Level

Grades 9-11