Math Problem Statement

[(m→¬n)∨(m˄n)]˄p Step-by-Step Simplification Table: Step Expression Rule Applied 1 [ ( 𝑚 → ¬ 𝑛 ) ∨ ( 𝑚 ˄ 𝑛 ) ] ˄ 𝑝 [(m→¬n)∨(m˄n)]˄p Original Expression 2 [ ( ¬ 𝑚 ∨ ¬ 𝑛 ) ∨ ( 𝑚 ˄ 𝑛 ) ] ˄ 𝑝 [(¬m∨¬n)∨(m˄n)]˄p Implication Rule: 𝑚 → ¬ 𝑛

¬ 𝑚 ∨ ¬ 𝑛 m→¬n=¬m∨¬n 3 ( ¬ 𝑚 ∨ ¬ 𝑛 ∨ 𝑚 ˄ 𝑛 ) ˄ 𝑝 (¬m∨¬n∨m˄n)˄p Associative Law: Combine ( ¬ 𝑚 ∨ ¬ 𝑛 ) (¬m∨¬n) and ( 𝑚 ˄ 𝑛 ) (m˄n) 4 ( ¬ 𝑚 ∨ ¬ 𝑛 ∨ 𝑚 ) ˄ ( ¬ 𝑚 ∨ ¬ 𝑛 ∨ 𝑛 ) ˄ 𝑝 (¬m∨¬n∨m)˄(¬m∨¬n∨n)˄p Distributive Law: Expand ¬ 𝑚 ∨ ¬ 𝑛 ∨ ( 𝑚 ˄ 𝑛 ) ¬m∨¬n∨(m˄n) 5 ( True ) ˄ ( True ) ˄ 𝑝 (True)˄(True)˄p Complement Law: ¬ 𝑚 ∨ 𝑚

True ,   ¬ 𝑛 ∨ 𝑛

True ¬m∨m=True, ¬n∨n=True 6 𝑝 p Identity Law: True˄ 𝑝

𝑝 True˄p=p

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Logical Operations
Simplification of Logical Expressions

Formulas

Implication Rule: m→¬n = ¬m∨¬n
Distributive Law
Complement Law
Identity Law

Theorems

Implication rule
Distributive law
Complement law
Identity law

Suitable Grade Level

Grades 10-12