Math Problem Statement

\ln \left(\frac{\left(x-2\right)\cdot \sqrt{x}}{\left(x^2+3x+2\right)^2}\right)

Solution

To simplify the given logarithmic expression:

ln((x2)x(x2+3x+2)2)\ln \left(\frac{(x-2) \cdot \sqrt{x}}{(x^2 + 3x + 2)^2}\right)

we can apply the properties of logarithms step by step.

Step 1: Use the property of logarithms for division:

ln(ab)=ln(a)ln(b)\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b) This gives: ln((x2)x)ln((x2+3x+2)2)\ln\left((x-2) \cdot \sqrt{x}\right) - \ln\left((x^2 + 3x + 2)^2\right)

Step 2: Apply the logarithm property to products:

ln(ab)=ln(a)+ln(b)\ln(ab) = \ln(a) + \ln(b) Thus: ln(x2)+ln(x)ln((x2+3x+2)2)\ln(x-2) + \ln(\sqrt{x}) - \ln\left((x^2 + 3x + 2)^2\right)

Step 3: Simplify ln(x)\ln(\sqrt{x}):

Recall that x=x1/2\sqrt{x} = x^{1/2}, so: ln(x)=12ln(x)\ln(\sqrt{x}) = \frac{1}{2} \ln(x) Now the expression becomes: ln(x2)+12ln(x)ln((x2+3x+2)2)\ln(x-2) + \frac{1}{2} \ln(x) - \ln\left((x^2 + 3x + 2)^2\right)

Step 4: Simplify the last term:

Use the logarithm property ln(ab)=bln(a)\ln(a^b) = b\ln(a): ln((x2+3x+2)2)=2ln(x2+3x+2)\ln\left((x^2 + 3x + 2)^2\right) = 2\ln(x^2 + 3x + 2)

Final Simplified Expression:

ln(x2)+12ln(x)2ln(x2+3x+2)\ln(x-2) + \frac{1}{2} \ln(x) - 2\ln(x^2 + 3x + 2)

This is the fully simplified form of the given logarithmic expression.

Would you like further details or clarifications?


Here are 5 related questions:

  1. How does the logarithm property ln(a/b)=ln(a)ln(b)\ln(a/b) = \ln(a) - \ln(b) work in other examples?
  2. How can we differentiate the simplified logarithmic expression?
  3. How does the chain rule apply to logarithmic functions in calculus?
  4. What happens if x=2x = 2 or x=1x = -1 in this expression?
  5. How can logarithms simplify complex exponential expressions?

Tip: When simplifying logarithmic expressions, always remember the key properties of logarithms for multiplication, division, and exponentiation to break down the terms systematically.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Algebra
Exponentiation

Formulas

ln(a/b) = ln(a) - ln(b)
ln(ab) = ln(a) + ln(b)
ln(a^b) = b ln(a)
ln(√x) = 1/2 ln(x)

Theorems

Properties of Logarithms

Suitable Grade Level

Grades 11-12