Math Problem Statement

Simplifier

Simplify the expressions A, B, H, and G as given in the image.

Solution

Let's simplify each expression step-by-step.

Expression A:

A=3832+72+328A = 3\sqrt{8} - \sqrt{32} + \sqrt{72} + 3\sqrt{28}

  1. Simplify each term:

    • 38=3×22=623\sqrt{8} = 3 \times 2\sqrt{2} = 6\sqrt{2}
    • 32=42\sqrt{32} = 4\sqrt{2}
    • 72=62\sqrt{72} = 6\sqrt{2}
    • 328=3×27=673\sqrt{28} = 3 \times 2\sqrt{7} = 6\sqrt{7}
  2. Substitute and combine like terms: A=6242+62+67=82+67A = 6\sqrt{2} - 4\sqrt{2} + 6\sqrt{2} + 6\sqrt{7} = 8\sqrt{2} + 6\sqrt{7}

Expression B:

B=28045+20B = 2\sqrt{80} - \sqrt{45} + \sqrt{20}

  1. Simplify each term:

    • 280=2×45=852\sqrt{80} = 2 \times 4\sqrt{5} = 8\sqrt{5}
    • 45=35\sqrt{45} = 3\sqrt{5}
    • 20=25\sqrt{20} = 2\sqrt{5}
  2. Substitute and combine like terms: B=8535+25=75B = 8\sqrt{5} - 3\sqrt{5} + 2\sqrt{5} = 7\sqrt{5}

Expression H:

H=36a+64a216aH = \sqrt{36a} + \sqrt{64a} - 2\sqrt{16a}

  1. Simplify each term:

    • 36a=6a\sqrt{36a} = 6\sqrt{a}
    • 64a=8a\sqrt{64a} = 8\sqrt{a}
    • 216a=2×4a=8a2\sqrt{16a} = 2 \times 4\sqrt{a} = 8\sqrt{a}
  2. Substitute and combine like terms: H=6a+8a8a=6aH = 6\sqrt{a} + 8\sqrt{a} - 8\sqrt{a} = 6\sqrt{a}

Expression G:

G=245320G = \sqrt{2\sqrt{45}} - 3\sqrt{20}

  1. Simplify each term:
    • (\sqrt{45} = 3\

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Radical Expressions
Square Roots
Algebra

Formulas

Square root simplification (e.g., \( \sqrt{ab} = \sqrt{a} \cdot \sqrt{b} \))
Basic algebraic operations on square roots (addition, subtraction)

Theorems

Properties of Radicals

Suitable Grade Level

Grades 8-10