Math Problem Statement

Bentuk sederhana dari (x^3 y^(-2) z^(1/2))^(-2) . (x^(-2) y z^(2/3))^(-3) adalah . . .

Solution

The question asks to simplify the following expression:

(x3y2z12)2(x2yz23)3\left( x^3y^{-2}z^{\frac{1}{2}} \right)^{-2} \cdot \left( x^{-2} y z^{\frac{2}{3}} \right)^{-3}

Step-by-step simplification:

  1. Simplify the first term:
    (x3y2z12)2\left( x^3y^{-2}z^{\frac{1}{2}} \right)^{-2} Applying the exponent -2 to each factor: = x^{-6} \cdot y^4 \cdot z^{-1}$$
  2. Simplify the second term: (x2yz23)3\left( x^{-2} y z^{\frac{2}{3}} \right)^{-3} Applying the exponent -3 to each factor: = x^6 \cdot y^{-3} \cdot z^{-2}$$
  3. Multiply the simplified terms together: Now, multiply the results of both terms: (x6y4z1)(x6y3z2)(x^{-6} \cdot y^4 \cdot z^{-1}) \cdot (x^6 \cdot y^{-3} \cdot z^{-2}) Combine the powers of the same variables: = x^0 \cdot y^1 \cdot z^{-3} = y \cdot z^{-3}$$

Thus, the simplified expression is yz3yz^{-3}.

The correct answer is:

D. yz3yz^{-3}


Do you have any questions or would you like further details on the steps?

Here are 5 related questions to consider:

  1. How do you apply negative exponents to simplify terms?
  2. How do you combine exponents when multiplying like bases?
  3. What happens when you raise a power to another power?
  4. How do you handle fractional exponents in expressions?
  5. Can you identify different forms of exponential simplifications?

Tip: When dealing with exponents, always apply the exponent to every factor inside the parentheses!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponents
Algebra
Simplification

Formulas

(a^m)^n = a^(m*n)
a^m * a^n = a^(m+n)

Theorems

Exponentiation Rules
Laws of Exponents

Suitable Grade Level

Grades 10-12