Math Problem Statement

Simplify the following expressions involving square roots: a) √8 × 2√6 b) -4√5 × 2√13 c) √2 × √6 × 3√3 d) 3√2 × 5√6 e) 2√3 × 3√6 f) 5√7 × 2√14 g) √6 × √2 h) √2 × 3√3 i) 5√3 × 2√2 j) √3 × √7

Solution

Let's go through the simplifications for each expression in turn:

a) 8×26\sqrt{8} \times 2\sqrt{6}

  • Simplify 8\sqrt{8}: 8=4×2=22\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}
  • Now the expression is 22×26=4122\sqrt{2} \times 2\sqrt{6} = 4\sqrt{12}
  • Simplify 12\sqrt{12}: 12=4×3=23\sqrt{12} = \sqrt{4 \times 3} = 2\sqrt{3}
  • So the final result is: 4×23=834 \times 2\sqrt{3} = 8\sqrt{3}

b) 45×213-4\sqrt{5} \times 2\sqrt{13}

  • Multiply the constants: 4×2=8-4 \times 2 = -8
  • Multiply the square roots: 5×13=65\sqrt{5} \times \sqrt{13} = \sqrt{65}
  • So the final result is: 865-8\sqrt{65}

c) 2×6×33\sqrt{2} \times \sqrt{6} \times 3\sqrt{3}

  • Multiply the square roots: 2×6=12=23\sqrt{2} \times \sqrt{6} = \sqrt{12} = 2\sqrt{3}
  • Now the expression is: 23×33=69=6×3=182\sqrt{3} \times 3\sqrt{3} = 6\sqrt{9} = 6 \times 3 = 18
  • So the final result is: 1818

d) 32×563\sqrt{2} \times 5\sqrt{6}

  • Multiply the constants: 3×5=153 \times 5 = 15
  • Multiply the square roots: 2×6=12=23\sqrt{2} \times \sqrt{6} = \sqrt{12} = 2\sqrt{3}
  • Now the expression is: 15×23=30315 \times 2\sqrt{3} = 30\sqrt{3}
  • So the final result is: 30330\sqrt{3}

e) 23×362\sqrt{3} \times 3\sqrt{6}

  • Multiply the constants: 2×3=62 \times 3 = 6
  • Multiply the square roots: 3×6=18=32\sqrt{3} \times \sqrt{6} = \sqrt{18} = 3\sqrt{2}
  • Now the expression is: 6×32=1826 \times 3\sqrt{2} = 18\sqrt{2}
  • So the final result is: 18218\sqrt{2}

f) 57×2145\sqrt{7} \times 2\sqrt{14}

  • Multiply the constants: 5×2=105 \times 2 = 10
  • Multiply the square roots: 7×14=98=72\sqrt{7} \times \sqrt{14} = \sqrt{98} = 7\sqrt{2}
  • Now the expression is: 10×72=70210 \times 7\sqrt{2} = 70\sqrt{2}
  • So the final result is: 70270\sqrt{2}

g) 6×2\sqrt{6} \times \sqrt{2}

  • Multiply the square roots: 6×2=12=23\sqrt{6} \times \sqrt{2} = \sqrt{12} = 2\sqrt{3}
  • So the final result is: 232\sqrt{3}

h) 2×33\sqrt{2} \times 3\sqrt{3}

  • Multiply the constants: 1×3=31 \times 3 = 3
  • Multiply the square roots: 2×3=6\sqrt{2} \times \sqrt{3} = \sqrt{6}
  • So the final result is: 363\sqrt{6}

i) 53×225\sqrt{3} \times 2\sqrt{2}

  • Multiply the constants: 5×2=105 \times 2 = 10
  • Multiply the square roots: 3×2=6\sqrt{3} \times \sqrt{2} = \sqrt{6}
  • So the final result is: 10610\sqrt{6}

j) 3×7\sqrt{3} \times \sqrt{7}

  • Multiply the square roots: 3×7=21\sqrt{3} \times \sqrt{7} = \sqrt{21}
  • So the final result is: 21\sqrt{21}

Would you like more detailed explanations for any step?

Related Questions:

  1. How do you simplify expressions involving square roots in general?
  2. Can you explain the difference between rational and irrational numbers?
  3. How do you rationalize the denominator in a fraction with a square root?
  4. What is the process for simplifying a product of two square roots?
  5. How do you simplify square roots with larger numbers?

Tip:

When multiplying square roots, remember to multiply the numbers inside the square roots first, and simplify only after.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of square roots
Product of square roots
Radicals

Formulas

√a × √b = √(a × b)
Multiplying constants with square roots: c√a × d√b = (c × d)√(a × b)

Theorems

Properties of square roots and multiplication
Simplification of radicals

Suitable Grade Level

Grades 8-10